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Amuse Bouche
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Experiment: Take large sample 𝑆 ⊆ 0,0.5 ' from 𝑔 𝑥 ; do MLE 

to fit most likely density (! "
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, where 𝑞 is some polynomial.
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(conditional of 
𝑓(𝑥) on [0,0.5])

Question: How well does fitted polynomial extrapolate?

- compare (! "
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to 𝑓 𝑥

Overfitting!

Yet, double-descent behavior!



Machine Learning Predictions

Machine Learning Pipeline: - Collect relevant data; partition into train set and validation set; 
- Train/choose hyperparameters
- Deploy 



But what do these results really mean?

Machine Learning Predictions on Steroids



Propublica AI Bias Article



Executive Summary

q Selection bias in data collection
⇒ prediction bias (a.k.a. “ML bias”)

q Goals: decrease bias, by developing statistical methods 
robust to censored and truncated samples

Truncation: samples falling outside of “observation window” are hidden 
and their count is also hidden
Censoring: ditto, but count of hidden data is provided

Why Censoring/Truncation?
o limitations of measurement devices
o limitations of data collection 

o experimental design, ethical or privacy considerations,…

q physics

q economics

q social sciences

q clinical studies



Goal: Relationship of IQ to Income for low-skill workers [Wolfle&Smith’56, Hause’71]
• “low skill” = paid under, say, $10/hour

Natural Approach: survey families whose income is less than 1.5 times the 
poverty line; collect data 𝑥3, 𝑦3 3 where
• 𝑥3: (IQ, Training, Education,…) of individual 𝑖
• 𝑦3: earnings of individual 𝑖

Regression: fit some model, e.g. 𝑦 = 𝜃4𝑥 + 𝜀

Obvious Issue: thresholding incomes may introduce bias
• it does, as shown by [Hausman-Wise’76] debunking prior results which had 

claimed that effects of education are strong, while of IQ are not

Motivating Example: IQ vs Income



Mental Picture:

Vanilla Linear Regression Data truncated on the Y-axis

Assumed truth: 𝑦3 = 𝜃 ⋅ 𝑥3 + 𝜀3, for all 𝑖

Income

IQ

Income 
threshold

True Fit

Naive Fit on 
truncated 

data

Supervised learning, 
with y-truncated data

Biased 
Models

What Goes Wrong in Presence of Truncation?



Explanation: Training data contains more 
faces that are of lighter skin tone, male 
gender, Caucasian

⇒ Training loss of gender classifier pays 
less attention to faces that are of darker 
skin tone, female gender, non-Caucasian

⇒ Test loss on faces that are of darker 
skin tone, female gender, non-Caucasian 
is worse

[Buolamwini, Gebru, FAT 2018]
Supervised learning, 
with x-truncated data

Biased 
Models

Motivating Example 2: Gender Classification



Since light dims with distance, brightness limited surveys of the sky 
suffer from the cut-off of fainter objects at larger distances

⇒ false trend of increasing intrinsic brightness, and other related 
quantities, with distance

Unsupervised learning, 
with truncated data

Biased 
Models

Motivating Example 3: Malmquist Bias



𝑥 ∼ 𝐷

Sample a 
covariate 𝒙

𝑧 = ℎ!∗(𝑥) + 𝜀

𝜀 ∼ 𝐷"

Sample noise 𝜺, 
compute latent 𝒛

w.p. 𝝋(𝒙, 𝒛) 𝑇 ∪ {(𝑥, 𝑦)}

Add (𝒙, 𝒚) to 
training set

Throw away (𝒙, 𝒛)

w.p. 𝟏−𝝋(𝒙, 𝒛)

𝑦:= 𝜋(𝑧)

Project 𝒛 to 
a label 𝒚

Truncated Regression/Classification Framework

Challenge: Estimate 𝜃∗ using training set 𝑇 produced as above
(𝜑 is either known or from parametric family)



𝑥 ∼ 𝐷

Sample a 
covariate 𝒙

𝑧 = 𝑥#𝜃∗ + 𝜀

𝜀 ∼ 𝒩(0,1)

Sample noise 𝜺, 
compute latent 𝒛

w.p. 𝝋(𝒛) 𝑇 ∪ {(𝑥, 𝑦)}

Add (𝒙, 𝒚) to 
training set

Throw away (𝒙, 𝒛)

w.p. 𝟏−𝝋(𝒛)

𝑦:= 𝑧

Project 𝒛 to 
a label 𝒚 (no 
projection)

e.g. Truncated Linear Regression

𝑥+𝜃∗



𝑥 ∼ 𝐷

Sample a 
covariate 𝒙

𝑧 = 𝑥#𝜃∗ + 𝜀

𝜀 ∼ Logistic(0,1)

Sample noise 𝜺, 
compute latent 𝒛

w.p. 𝝋(𝒛) 𝑇 ∪ {(𝑥, 𝑦)}

Add (𝒙, 𝒚) to 
training set

Throw away (𝒙, 𝒛)

w.p. 𝟏−𝝋(𝒛)

𝑦:= 1% & '

Project 𝒛 to 
a label 𝒚

e.g. Truncated Logistic Regression

𝑥+𝜃∗ 𝑥+𝜃∗



𝑥 ∼ 𝐷=∗

Sample a 
data point x w.p. 𝝋(𝒙) 𝑇 ∪ {𝑥}

Add 𝒙 to 
training set

Throw away 𝒙

w.p. 𝟏−𝝋(𝒙)

Truncated Density Estimation Framework

Challenge: Estimate 𝜃∗ using training set 𝑇 produced as above
(𝜑 is either known or from parametric family)



How to train unbiased models from censored/truncated samples?
• Studied in Statistics/Econometrics since at least [Bernoulli 1760]

• Intimately related to domain adaptation in Machine Learning

Challenges:
• Error rates:  !"# $

%
• Computationally inefficient algorithms

Recent work
• Computationally and Statistically efficient algorithms; arbitrary truncation sets
• truncated linear/logistic/probit regression, compressed sensing, (non-parametric) density estimation

• e.g. rates for linear regression 𝑂 𝑑/𝑛
• e.g. rates for compressed sensing 𝑂 𝑘 log 𝑑 /𝑛

#parameters/dimension

#biased samples

[w/ Gouleakis, Ilyas, Kontonis, Rohatgi, Tzamos, Zampetakis in FOCS’18, COLT’19, AISTATS’20, in progress]

[Galton 1897], [Pearson 1902], [Pearson, Lee 1908], [Lee 1914], [Fisher 1931], 
[Hotelling 1948, [Tukey 1949], [Tobin 1958], [Amemiya 1973], [Hausman, Wise 
1976], [Breen 1996], [Hajivassiliou-McFadden’97], [Balakrishnan, Cramer 2014], 
Limited Dependent Variables models, Method of Simulated Scores, GHK Algorithm

Censored/Truncated Statistics



How to train unbiased models from censored/truncated samples?
• Studied in Statistics/Econometrics since at least [Bernoulli 1760]

• Intimately related to domain adaptation in Machine Learning

Challenges:
• Error rates:  !"# $

%
• Computationally inefficient algorithms

Recent work
• Computationally and Statistically efficient algorithms; arbitrary truncation sets
• truncated linear/logistic/probit regression, compressed sensing, (non-parametric) density estimation

• e.g. rates for linear regression 𝑂 𝑑/𝑛
• e.g. rates for compressed sensing 𝑂 𝑘 log 𝑑 /𝑛

#parameters/dimension

#biased samples

[w/ Gouleakis, Ilyas, Kontonis, Rohatgi, Tzamos, Zampetakis in FOCS’18, COLT’19, AISTATS’20, in progress]

[Galton 1897], [Pearson 1902], [Pearson, Lee 1908], [Lee 1914], [Fisher 1931], 
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Censored/Truncated Statistics

Why now?
• Mathematics: concentration/anti-concentration of 

measure [Carbery-Wright‘01]
• Machine Learning/Optimization: stochastic 

gradient descent
• Hardware: gradient descent based algorithms 

exportable to Deep Neural Network models



When Does Extrapolation Work?
(an impressionistic picture)
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Overfitting!

Yet, double-descent behavior!
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Theorem: Suppose 𝑃, 𝑄 are distributions over 0,1 $, whose log-densities are polynomials of 
degree 𝑘. Suppose 𝑆 ⊆ 0,1 $ has 𝑣𝑜𝑙 𝑆 ≥ 𝛼. Then:

𝑑
𝛼

&'())

≤
𝑇𝑉 𝑃, 𝑄
𝑇𝑉 𝑃+, 𝑄+

≤
𝑑
𝛼

'())

Implication: If 𝑃, 𝑄 are far in their whole domain, their conditionals can’t appear too close.



Synthetic data

Setup:
• 𝜃∗ ∼ 𝒰([−1,1]"#)
• 𝑋", … , 𝑋$ ∼ 𝒰([0,1]"#)
• 𝑍%: = 𝜃∗&𝑋% + 𝜀%
• 𝜀%~𝒩(0,1)/Logistic(0,1) 
• Truncation: φ 6 = 1[(,*)
• Projection: 𝑌% = 𝟏,,-#

– when 𝐶 = 0 only see 
positive examples

Experiment: Logistic and Probit Regression



UCI MSD dataset

Setup:

• 𝑋: song attributes

• 𝑍: year recorded

• Truncation [𝐶,∞)

• 𝑌: recorded before ’96?

Experiment 2: Logistic Regression



Train Set Test Set

Metaphor of settings where support of test set distribution is measure 0 on support 
of train set distribution

Test Error of Naïve AlexNet Gender Classifier: 55%

Improvement using truncated Statistics: 80%

Experiment 3: Extreme Domain Adaptation



q Missing Observations  ⇒ prediction bias (a.k.a. “AI bias”)

q Our Work: decrease bias, by developing statistical methods more robust to censored 
and truncated samples

q General Framework: SGD on Population Log-Likelihood (applies to DNNs)

q End-to-end guarantees: statistical rates and efficient algorithms for several classical 
problems in Statistics: linear/probit/logistic regression, compressed sensing, non-
parametric density estimation

qFuture work: push further on reducing parametric assumptions

Conclusions

Thank you!
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Censored/Truncated Statistics

𝒙 ∼ 𝐷-

add 𝒙 to 
training set

throw 𝒙 to the 
trash

w. pr. 
𝜙(𝑥)

w. pr. 
1 − 𝜙(𝑥)

production of training data

Goal: Estimate 𝜃 using 
truncated training set

Truncated Density Estimation


