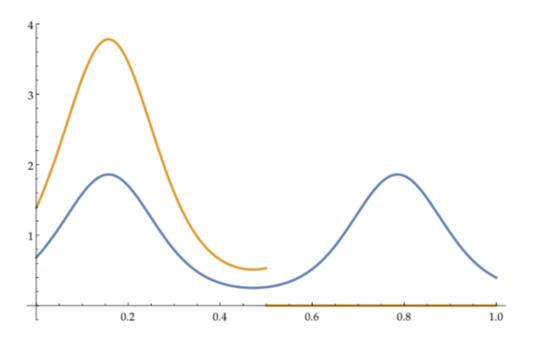
Learning from Biased Data

Constantinos Daskalakis EECS & CSAIL, MIT

Amuse Bouche



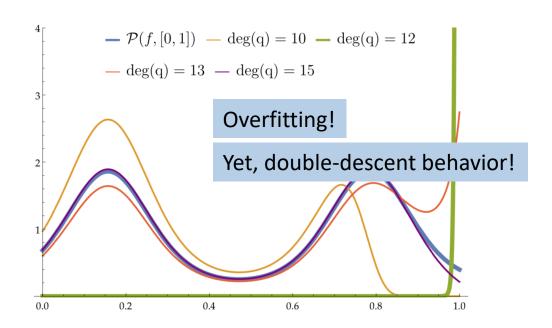
$$f(x) = \frac{e^{\sin 10x}}{\int_0^1 e^{\sin 10x} dx}$$

$$g(x) = \frac{e^{\sin 10x}}{\int_0^{1/2} e^{\sin 10x} dx}$$
 (conditional of
$$f(x) \text{ on } [0,0.5]$$
)

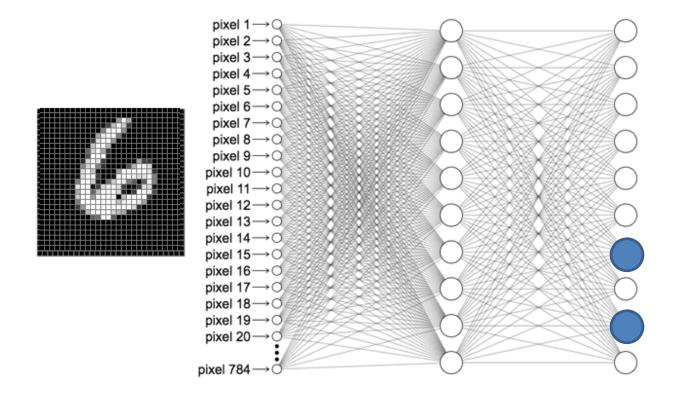
Experiment: Take large sample $S \subseteq [0,0.5]^N$ from g(x); do MLE to fit most likely density $\frac{\mathrm{e}^{q(x)}}{\int_0^{1/2} \mathrm{e}^{q(x)} \mathrm{d}x}$, where q is some polynomial.

Question: How well does fitted polynomial extrapolate?

- compare
$$\frac{e^{q(x)}}{\int_0^1 e^{q(x)} dx}$$
 to $f(x)$



Machine Learning Predictions



Machine Learning Pipeline:

- Collect relevant data; partition into train set and validation set;
- Train/choose hyperparameters
- Deploy

Machine Learning Predictions on Steroids

ILSVRC top-5 Error on ImageNet

But what do these results really mean?

Propublica Al Bias Article

Machine Bias

There's software used across the country to predict future criminals. And it's biase against blacks.

by Julia Angwin, Jeff Larson, Surya Mattu and Lauren Kirchner, ProPublica
May 23, 2016

N A SPRING AFTERNOON IN 2014, Brisha Borden was running late to pick up her god-sister from school when she spotted an unlocked kid's blue Huffy bicycle and a silver Razor scooter. Borden and a friend grabbed the bike and scooter and tried to ride them down the street in the Fort Lauderdale suburb of Coral Springs.

Just as the 18-year-old girls were realizing they were too big for the tiny conveyances — which belonged to a 6-year-old boy — a woman came running after them saying, "That's my kid's stuff." Borden and her friend immediately dropped the bike and scooter and walked away.

Executive Summary

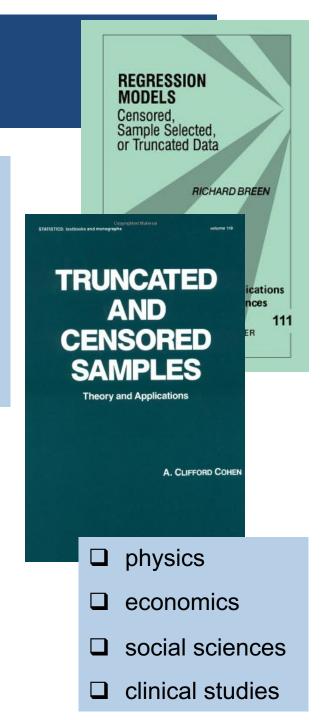
- ☐ Selection bias in data collection
 - ⇒ prediction bias (a.k.a. "ML bias")
- ☐ Goals: decrease bias, by developing statistical methods robust to censored and truncated samples

Truncation: samples falling outside of "observation window" are hidden and their count is also hidden

Censoring: ditto, but count of hidden data is provided

Why Censoring/Truncation?

- limitations of measurement devices
- limitations of data collection
 - o experimental design, ethical or privacy considerations,...



Motivating Example: IQ vs Income

Goal: Relationship of IQ to Income for low-skill workers [Wolfle&Smith'56, Hause'71]

"low skill" = paid under, say, \$10/hour

Natural Approach: survey families whose income is less than 1.5 times the poverty line; collect data $(x_i, y_i)_i$ where

- x_i : (IQ, Training, Education,...) of individual i
- y_i : earnings of individual i

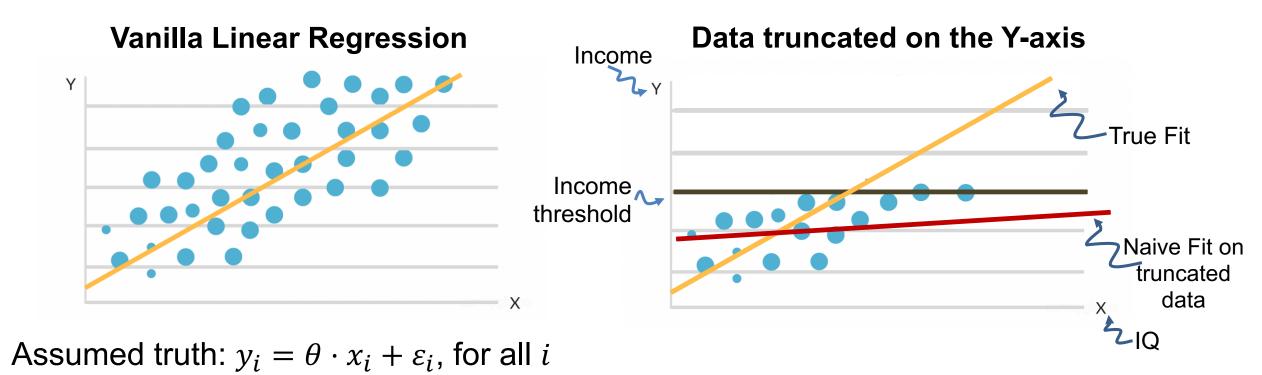
Regression: fit some model, e.g. $y = \theta^T x + \varepsilon$

Obvious Issue: thresholding incomes may introduce bias

 it does, as shown by [Hausman-Wise'76] debunking prior results which had claimed that effects of education are strong, while of IQ are not

What Goes Wrong in Presence of Truncation?

Mental Picture:



Supervised learning, with y-truncated data

Biased Models

Motivating Example 2: Gender Classification

[Buolamwini, Gebru, FAT 2018]

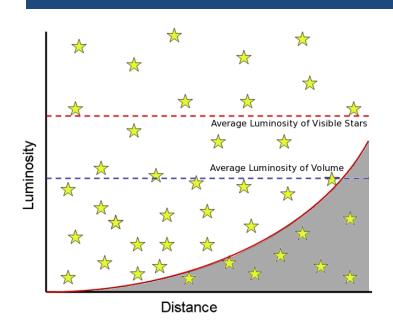
Explanation: Training data contains more faces that are of lighter skin tone, male gender, Caucasian

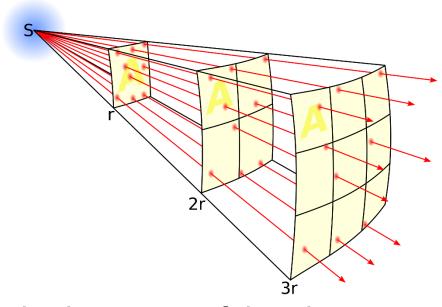
- ⇒ Training loss of gender classifier pays less attention to faces that are of darker skin tone, female gender, non-Caucasian
- ⇒ Test loss on faces that are of darker skin tone, female gender, non-Caucasian is worse

Supervised learning, with x-truncated data

Biased Models

Motivating Example 3: Malmquist Bias





Since light dims with distance, brightness limited surveys of the sky suffer from the cut-off of fainter objects at larger distances

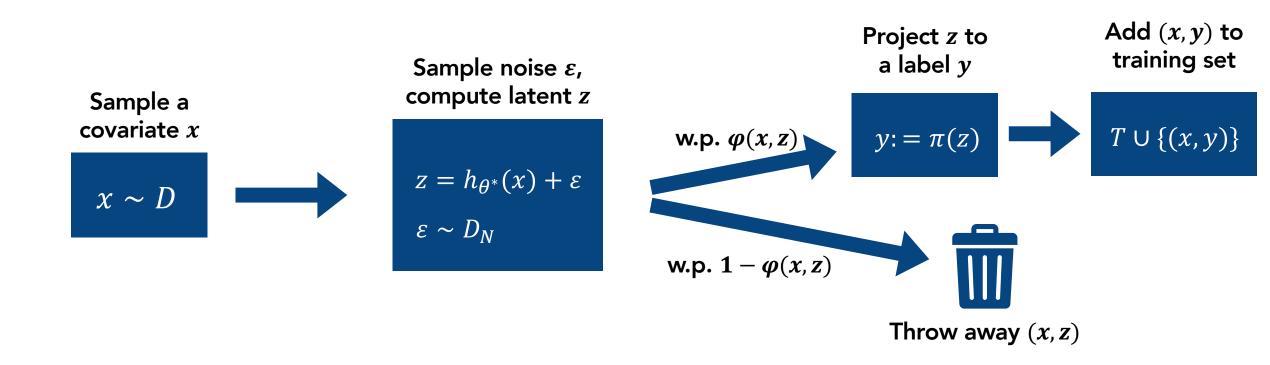
⇒ false trend of increasing intrinsic brightness, and other related

quantities, with distance

Unsupervised learning, with truncated data

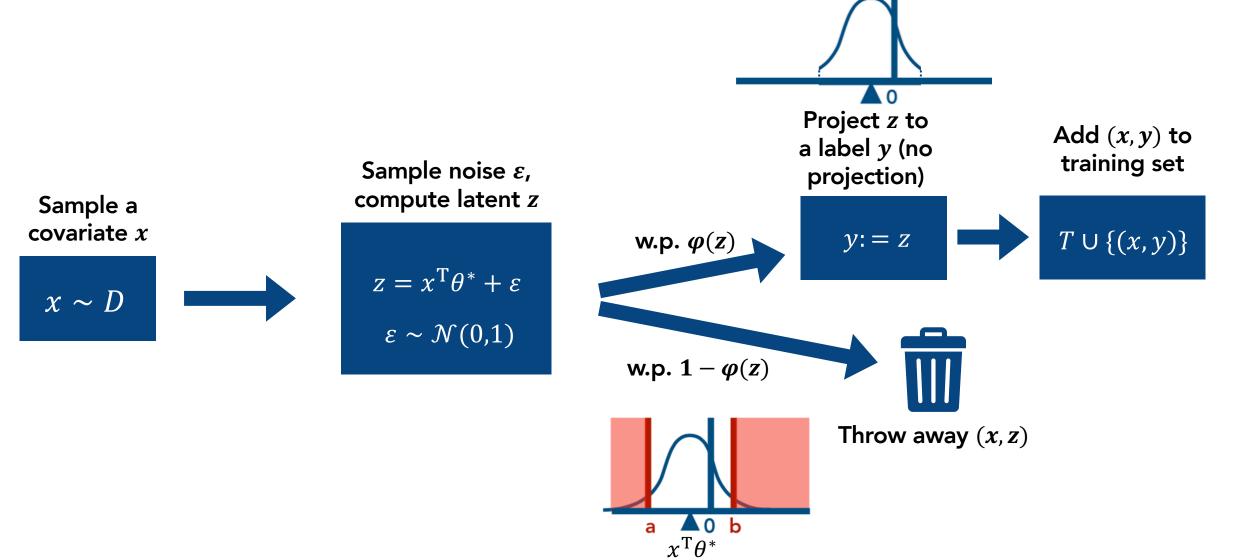
Biased Models

Truncated Regression/Classification Framework

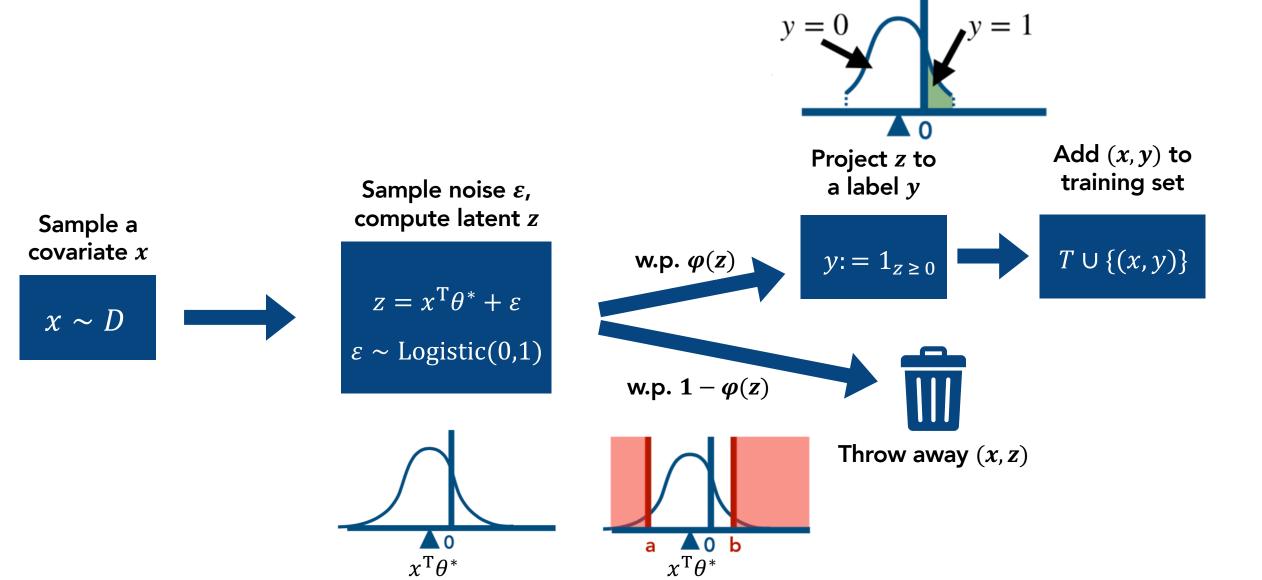


Challenge: Estimate θ^* using training set T produced as above $(\varphi$ is either known or from parametric family)

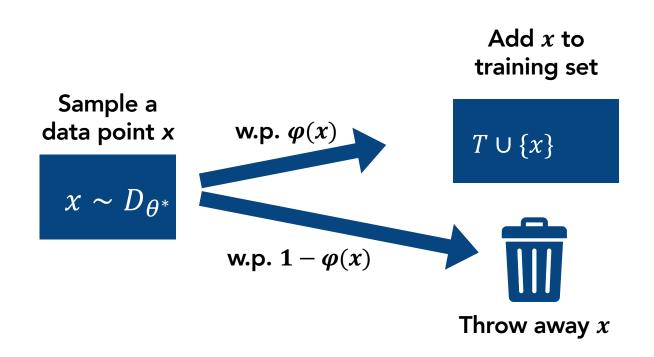
e.g. Truncated Linear Regression



e.g. Truncated Logistic Regression



Truncated Density Estimation Framework



Challenge: Estimate θ^* using training set T produced as above $(\varphi$ is either known or from parametric family)

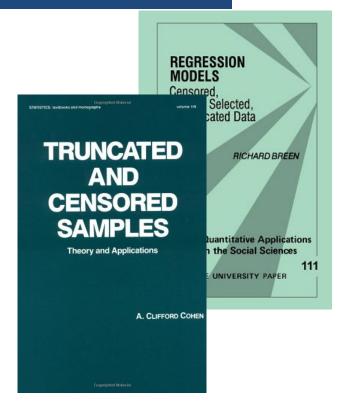
Censored/Truncated Statistics

How to train unbiased models from censored/truncated samples?

- Studied in Statistics/Econometrics since at least [Bernoulli 1760] [Galton 1897], [Pearson 1902], [Pearson, Lee 1908], [Lee 1914], [Fisher 1931], [Hotelling 1948, [Tukey 1949], [Tobin 1958], [Amemiya 1973], [Hausman, Wise 1976], [Breen 1996], [Hajivassiliou-McFadden'97], [Balakrishnan, Cramer 2014], Limited Dependent Variables models, Method of Simulated Scores, GHK Algorithm
- Intimately related to domain adaptation in Machine Learning

Challenges: #parameters/dimension

- Error rates: $\frac{\operatorname{Bad}(d)}{\sqrt{n}}$ #biased samples
- Computationally inefficient algorithms



Recent work [w/ Gouleakis, Ilyas, Kontonis, Rohatgi, Tzamos, Zampetakis in FOCS'18, COLT'19, AISTATS'20, in progress]

- Computationally and Statistically efficient algorithms; arbitrary truncation sets
- truncated linear/logistic/probit regression, compressed sensing, (non-parametric) density estimation
 - e.g. rates for linear regression $O(\sqrt{d/n})$
 - e.g. rates for compressed sensing $O(\sqrt{k \log d / n})$

Censored/Truncated Statistics

How to train unbiased models from censored/truncated samples?

Studied in Statistics/Econometrics since at least [Bernoulli 1760]

[Galton 1897], [Pearson 1902], [Pearson, Lee 1908], [Lee 1914], [Fisher 1931], [Hotelling 1948, [Tukey 1949], [Tobin 1958], [Amemiya 1973], [Hausman, Wise

1976], [Breen 1996], [Hajivassilio

Limited Dependent Variables m

Intimately related to doma

Challenges:

- Error rates: $\frac{\mathrm{Bad}(d)}{\sqrt{n}}$
- Computationally inefficient :

Recent work [w/ Gouleakis, Ilyas,

Computationally and Statistica.

Why now?

- Mathematics: concentration/anti-concentration of measure [Carbery-Wright'01]
- Machine Learning/Optimization: stochastic gradient descent
- Hardware: gradient descent based algorithms exportable to Deep Neural Network models

rogress]

RICHARD BREEN

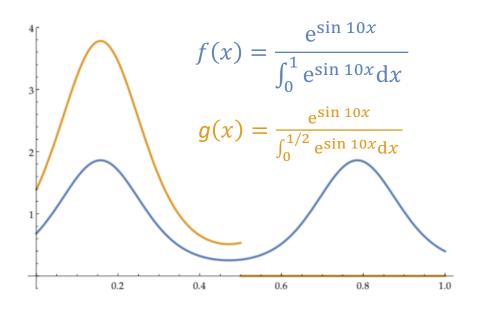
ve Applications ial Sciences

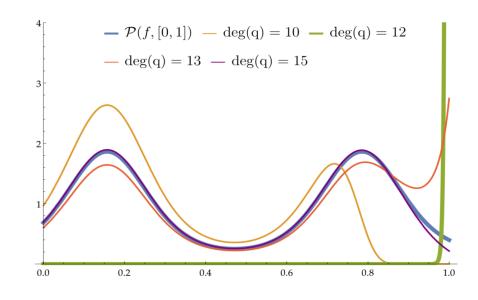
REGRESSION

- truncated linear/logistic/probit regression, compressed sensing, (non-parametric) density estimation
 - e.g. rates for linear regression $O(\sqrt{d/n})$
 - e.g. rates for compressed sensing $O(\sqrt{k\log d\ /n})$

When Does Extrapolation Work?

(an impressionistic picture)





Experiment: Take large sample $S \subseteq [0,0.5]^N$ from g(x); do MLE to fit most likely density $\frac{\mathrm{e}^{q(x)}}{\int_0^{1/2} \mathrm{e}^{q(x)} \mathrm{d}x}$, where q is some polynomial.

Question: How well does fitted polynomial extrapolate?

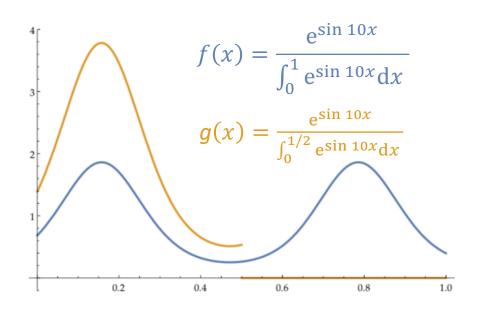
- compare
$$\frac{e^{q(x)}}{\int_0^1 e^{q(x)} dx}$$
 to $f(x)$

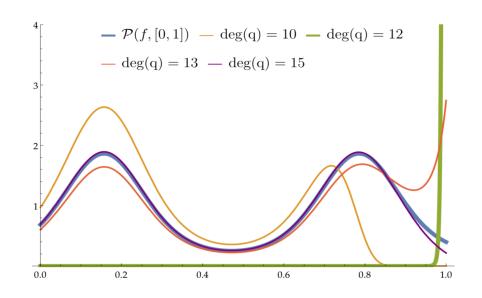
Overfitting!

Yet, double-descent behavior!

When Does Extrapolation Work?

(an impressionistic picture)





Theorem: Suppose P,Q are distributions over $[0,1]^d$, whose log-densities are polynomials of degree k. Suppose $S \subseteq [0,1]^d$ has $vol(S) \ge \alpha$. Then:

$$\left(\frac{d}{\alpha}\right)^{-O(k)} \le \frac{TV(P,Q)}{TV(P_S,Q_S)} \le \left(\frac{d}{\alpha}\right)^{O(k)}$$

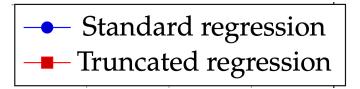
Implication: If P, Q are far in their whole domain, their conditionals can't appear too close.

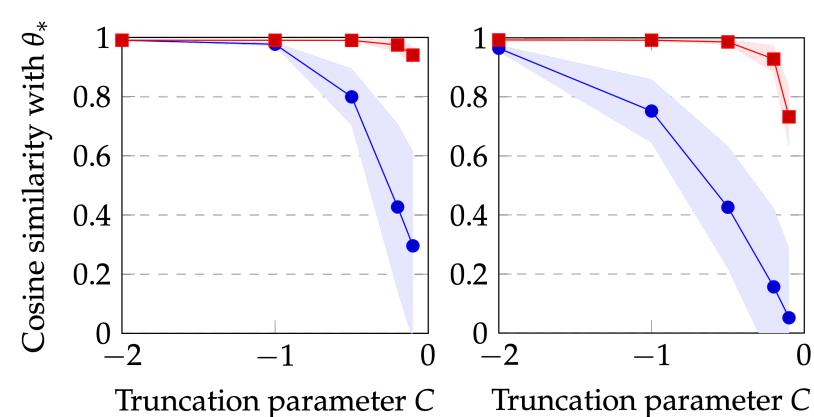
Experiment: Logistic and Probit Regression

Synthetic data

Setup:

- $\theta^* \sim \mathcal{U}([-1,1]^{10})$
- $X_1, ..., X_n \sim \mathcal{U}([0,1]^{10})$
- $Z_i := \theta_*^\top X_i + \varepsilon_i$
- $\varepsilon_i \sim \mathcal{N}(0,1)/\text{Logistic}(0,1)$
- Truncation: $\varphi(\cdot) = 1_{[C,\infty)}$
- Projection: $Y_i = \mathbf{1}_{Z_i \geq 0}$
 - when C = 0 only see positive examples



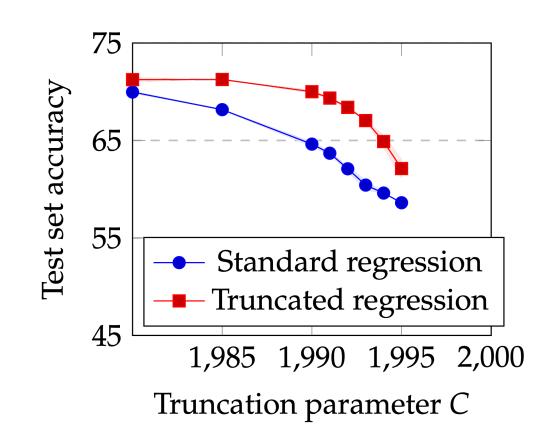


Experiment 2: Logistic Regression

UCI MSD dataset

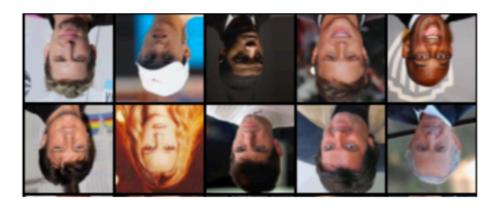
Setup:

- *X*: song attributes
- Z: year recorded
- Truncation $[C, \infty)$
- *Y*: recorded before '96?



Experiment 3: Extreme Domain Adaptation

Train Set



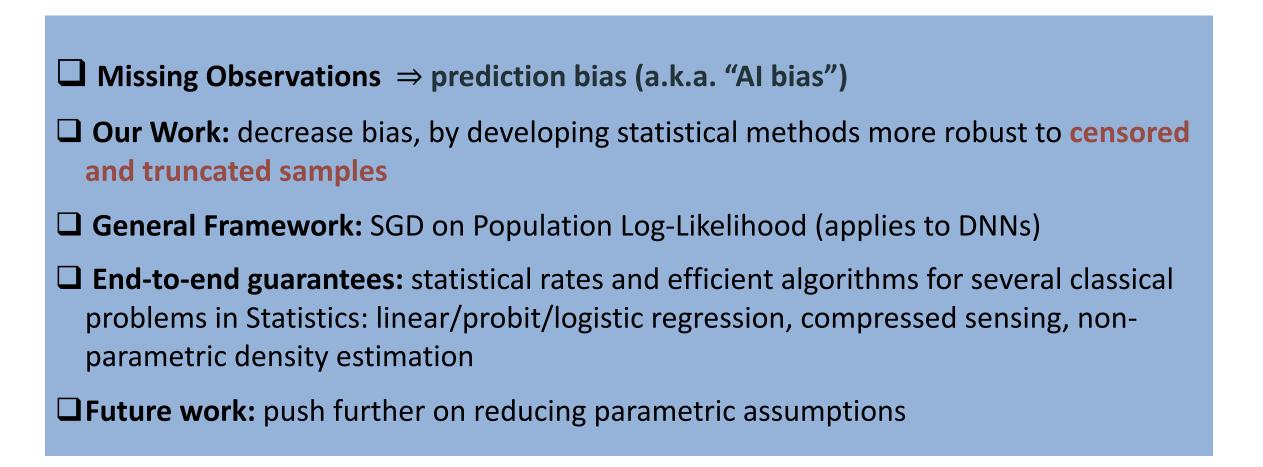
Test Set

Metaphor of settings where support of test set distribution is measure 0 on support of train set distribution

Test Error of Naïve AlexNet Gender Classifier: 55%

Improvement using truncated Statistics: 80%

Conclusions



Thank you!

• Skipped Slides

Censored/Truncated Statistics

Truncated Density Estimation

