Adversarial Examples and Human-ML Alignment

Aleksander Madry

Based on joint works with:

Logan Engstrom

Brandon Tran

Andrew Ilyas

Dimitris Tsipras

Shibani Santurkar

Alexander Turner

Deep Networks: Towards Human Vision

Deep Networks: Towards Human Vision

→ "Meaningful" data representations

Cross-task generalization

Generative models

[Brock et al 2018] + [Isola 2018]

So: Are we on the right path?

(Is all we need "just" scaling up?)

Message for today: Models deviate from human perception in unexpected ways

→ It is all about features

Deep Networks: Towards Human Vision?

But...

Adversarial Examples: Imperceptible changes fool models

Deep Networks: Towards Human Vision?

Why do adv. examples exist?

Unifying theme: Adversarial examples are aberrations

A Natural View on Adversarial Examples

"Useless" directions model is unreasonably sensitive to

Useful features that actually help in good classification

create an adversarial example

Underlying belief:

"Better" models would avoid this sensitivity

But: Is this view justified?

Why Are Adv. Perturbations Bad?

But: This is only a "human" perspective

Human Perspective

cat

dog

Only goal:

Max (test) accuracy

dog

cat

Are adversarial perturbations indeed meaningless?

[Ilyas Santurkar Tsipras Engstrom Tran M '19]

Simple experiment

Training set (cats vs. dogs)

dog

cat

dog

cat

Adv. ex. towards the other class

New training set ("mislabelled")

Evaluate on original test set

Simple experiment

Simple experiment

What's going on?

What if adversarial perturbations are **not** aberrations but **features**?

The Robust Features Model

The Robust Features Model

Useless directions

Robust features

Correlated with label even when perturbed

The Robust Features Model

Useless directions

Robust features

even when perturbed

Non-robust features

Correlated with label Correlated with label, but can be flipped via perturbation

When maximizing (test) accuracy: All useful features are good

And: Non-robust features are often great!

That's why our models pick on them (and become vulnerable to adversarial perturbations)

The Simple Experiment: A Second Look

All robust features are misleading

But: Non-robust features suffice for good generalization

What now?

A (new) perspective on adversarial robustness

But also: Provides insight into how our models learn

Human vs ML Model Priors

These are **equally valid** classification methods

→ No reason for our models to favor the "human" one

In fact, models...

...can be invariant to task-relevant features [Jacobsen et al 2019]

...depend unintuitively on linear directions [Jetley et al 2018]

(c) Texture-shape cue conflict 63.9% Indian elephant

...depend too much on texture [Geirhos et al 2019]

Adversarial examples are largely a human phenomenon

These are equally valid classification methods

→ No reason for our models to favor the "human" one

Consequence: Interpretability

Models that use non-robust features cannot be human interpretable

For instance: Input Saliency Maps

Image

No hope for interpretability without intervention at training time

Post-hoc interpretations may mask features models depend on

Consequence: Training Modifications

To get **robust models** we need to explicitly train them to ignore non-robust features

Standard Training:
$$\min_{\theta} \mathbb{E}_{(x,y)\sim D}[\ell(\theta;x,y)]$$

Robust Training:
$$\min_{\theta} \mathbb{E}_{(x,y) \sim D}[\max_{\delta \in \Delta} \mathcal{E}(\theta; x + \delta, y)]$$
Desired invariance

Enforces additional restrictions (priors) on what features models can use to make predictions

Consequence: Robustness Tradeoffs

Robust models can only leverage robust features

(Even though non-robust features **do** help with accuracy)

→ May get a lower standard accuracy (vide [Tsipras Santurkar Engstrom Turner M '18])

→ Need more data to get a given (robust) accuracy (vide [Schmidt Santurkar Tsipras Talwar M '18])

What if we force models to rely solely on robust features?

[Tsipras Santurkar Engstrom Turner M '18] [Engstrom Ilyas Santurkar Tsipras Tran M '19] [Santurkar Tsipras Tran Ilyas Engstrom M '19]

Robustness → Perception Alignment

Prediction: dog

Pixel influence "heatmap" (standard)

Pixel influence "heatmap" (robust)

Models become more (human) perception aligned

Robustness → Better Representations

Robust Model

Robust representation distance tends to align better with perceptual distance

Robustness → Better Representations

Direct feature visualization

Feature manipulation

Interpolation

Robust representations **transfer better** across tasks [Salman Ilyas Engstrom Kapoor M '20]

Robustness → CV Applications

Generation

Image Translation

Superresolution

Inpainting

More Broadly

It is also about **choosing** what features our models should use

Problem: Correlations can be weird

Problem: Correlations can be weird

"...if an image had a ruler in it, the algorithm was more likely to call a tumor malignant..."

[Esteva et al. 2017]

"CNNs were able to detect where an x-ray was acquired [...] and calibrate predictions accordingly."

[Zech et al. 2018]

"Predictive" patterns can be misleading

"Counterfactual" Analysis with Robust Models

label: "insect"; prediction: "dog"

Robustness = Framework for controlling what correlations to extract

Takeaways

Adversarial examples arise from non-robust features in the data

- → These features **do** help in generalization (a lot!) and that's why our models like to rely on them
- → Interpretability needs to be addressed at training time

Robustness induces more "human-aligned" representations

- → Enable a broad range of vision applications (in a simple way)
- → Support findings (simple) counterfactuals

But: It is really about how (and what) our models learn

- → What is the "right" notion of generalization?
- → What features do we want our models to use?
- → How much do we value human alignment/interpretability?

Adversarial robustness =

Framework for feature engineering

How can/should robust ML view inform/learn from neuroscience?

Questions?

(See the materials on the website)

