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Many animals, and an increasing number of artificial agents, dis-
play sophisticated capabilities to perceive and manipulate objects.
But human beings remain distinctive in their capacity for flexible,
creative tool use—using objects in new ways to act on the world,
achieve a goal, or solve a problem. To study this type of general
physical problem solving, we introduce the Virtual Tools game.
In this game, people solve a large range of challenging physi-
cal puzzles in just a handful of attempts. We propose that the
flexibility of human physical problem solving rests on an ability
to imagine the effects of hypothesized actions, while the effi-
ciency of human search arises from rich action priors which are
updated via observations of the world. We instantiate these com-
ponents in the “sample, simulate, update” (SSUP) model and show
that it captures human performance across 30 levels of the Vir-
tual Tools game. More broadly, this model provides a mechanism
for explaining how people condense general physical knowledge
into actionable, task-specific plans to achieve flexible and efficient
physical problem solving.

intuitive physics | physical problem solving | tool use

While trying to set up a tent on a camping trip, you real-
ize that the ground is too hard for the tent stakes, and

you have no hammer. What would you do? You might look
around for a suitable hammer substitute, passing over objects
like pinecones or water bottles in favor of a graspable rock. And
if that rock failed to drive in the stakes at first, you might try a dif-
ferent grip or search for a heavier rock. Most likely, you would
need only a handful of attempts before you found an approach
that works. Determining how to pound in tent stakes without a
hammer is an example of the flexibility and efficiency of more
general physical problem solving. It requires a causal under-
standing of how the physics of the world work and sophisticated
abilities for inference and learning to construct plans that solve
a novel problem. Consider how, when faced with the tent stake
challenge, we do not choose an object at random; we choose a
rock because we believe we know how we could use it to gen-
erate sufficient force on the stake. And if we find that the first
rock fails, we again search around for a solution, but use the
knowledge of our failures to guide our future search. This style
of problem solving is a very structured sort of trial-and-error
learning: Our search has elements of randomness, but within a
plausible solution space, such that the goal can often be reached
very quickly.

Here we study the cognitive and computational underpinnings
of flexible tool use. While human tool use relies on a number
of cognitive systems—for instance, knowing how to grasp and
manipulate an object or understanding how a particular tool is
typically used—here we focus on “mechanical reasoning,” or the
ability to spontaneously repurpose objects in our environment to
accomplish a novel goal (3–5).

We target this mechanical reasoning because it is the type
of tool use that is quintessentially human. While other animals
can manipulate objects to achieve their aims, only a few species
of birds and primates have been observed to spontaneously use
objects in novel ways, and we often view these activities as some

of the most “human-like” forms of animal cognition (e.g., Fig. 1
A and B) (6). Similarly, while artificial intelligence (AI) systems
have become increasingly adept at perceiving and manipulating
objects, none perform the sort of rapid mechanical reasoning
that people do. Some artificial agents learn to use tools from
expert demonstrations (7), which limits their flexibility. Oth-
ers learn from thousands of years of simulated experience (8),
which is significantly longer than required for people. Still oth-
ers can reason about mechanical functions of arbitrary objects
but require perfect physical knowledge of the environment (9),
which is unavailable in real-world scenarios. In contrast, even
young humans are capable tool users: By the age of 4 years they
can quickly choose an appropriate object and determine how to
use it to solve a novel task (e.g., picking a hooked rather than a
straight pipe cleaner to retrieve an object from a narrow tube;
Fig. 1C) (10).

What are the cognitive systems that let us use tools so flexibly
and accomplish our goals so rapidly? It has been suggested that
mechanical reasoning relies on mental simulation, which lets us
predict how our actions will cause changes in the world (3). This
general-purpose simulation is a necessary component that sup-
ports our ability to reason about objects in novel environments,
but by itself cannot explain how we make and update our plans so
quickly. We propose that another key to rapid tool use is know-
ing what sorts of actions to even consider—both from an initial
understanding of what actions are useful and by updating this
belief from observing the outcome of our actions, in simulation
and in reality.

This paper makes two contributions. First, we introduce the
Virtual Tools game, which presents a suite of physical problem-
solving challenges and allows for precise, quantifiable compar-
isons between human and machine agents. Second, we present
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Fig. 1. Examples of using objects to achieve a goal. (A) Bearded capuchin
monkey opening a cashew nut with an appropriately sized stone. Reprinted
from ref. 1, which is licensed under CC BY 4.0. (B) New Caledonian crow
using heavy blocks to raise the water level in a tube to retrieve food (2).
(C) Toddler using a shovel to reach a ball. Image credit: YouTube/Funny
Vines (http://youtu.be/hwrNQ93-568?t=198). (D) One illustrative trial in the
Virtual Tools game (https://k-r-allen.github.io/tool-games/). (D, i) The player
must get the red object into the green goal using one of the three tools.
(D, ii) The player chooses a tool and where to place it. (D, iii) Physics is
turned “on” and the tool interacts with other objects. The action results in a
near miss.

a minimal model of flexible tool use, called “sample, simu-
late, update” (SSUP). This model is built around an efficient
albeit noisy simulation engine that allows the model to act
flexibly across a wide variety of physical tasks. To solve prob-
lems rapidly, the SSUP model contains rich knowledge about
the world in the form of a structured prior on candidate tools
and actions likely to solve the problem, which allows it to
limit its simulations to promising candidates. It further learns
from its simulations and from observing the outcome of its
own actions to update its beliefs about what those promis-
ing candidates should be. Across 30 Virtual Tools levels in
two experiments, we show that an instantiation of the SSUP
model captures the relative difficulties of different levels for
human players, the particular actions performed to attempt

to solve each level, and how the solution rates for each level
evolve.

The Virtual Tools Game Inspired by human tool use, as well as
mobile physics games (11), we propose the Virtual Tools game as
a platform for investigating the priors, representations, and plan-
ning and learning algorithms used in physical problem solving
(https://k-r-allen.github.io/tool-games/). This game asks players
to place one of several objects (“tools”) into a two-dimensional
(2D) dynamic physical environment to achieve a goal: getting a
red object into a green region (Fig. 1D). This goal is the same for
every level, but what is required to achieve it varies greatly. Once
a single tool is placed, the physics of the world are enabled so that
players see the effect of the action they took. If the goal is not
achieved, players can “reset” the world to its original state and
try again; they are limited to a single action on each attempt. We
designed 30 levels—20 for the original experiment (Fig. 2) and
10 for a validation experiment (see Fig. 7A)—to test concepts
such as “launching,” “blocking,” and “supporting.” Of the first 20
levels, 12 were constructed in six “matched pairs” which incorpo-
rated small differences in the goals or objects in the scene to test
whether subtle differences in stimuli would lead to observable
differences in behavior.

The Virtual Tools game presents particular challenges that we
believe underlie the kinds of reasoning required for rapid phys-
ical problem solving more generally. First, there is a diversity
of tasks that require different strategies and physical concepts
to solve, but employ shared physical dynamics that approxi-
mate the real world. Second, the game requires long-horizon
causal reasoning. Since players can interact with the game only
by placing a single object, they must be able to reason about
the complex cause and effect relationships of their action long
into the future when they can no longer intervene. Finally, the
game elicits rapid trial-and-error learning in humans. Human
players do not generally solve levels on their first attempt, but
also generally do not require more than 5 to 10 attempts to
succeed. People demonstrate a wide range of problem-solving
behaviors, including “aha” insights where they suddenly dis-
cover the right idea for how to solve a particular task, as
well as incremental trial-and-error strategy refinement. Fig. 3
demonstrates how this occurs in practice, showing four dif-
ferent examples of participants learning rapidly or slowly and

1. Basic 2. Bridge 3. Catapult 4. Chaining 5. Gap 6. SeeSaw 7. Unbox

8. Unsupport 11. Launch (A) 12. Launch (B) 13. Prevention (A) 14. Prevention (B)9. Falling (A) 10. Falling (B)

15. Shafts (A) 16. Shafts (B) 17. Table (A) 18. Table (B) 19. Towers (A) 20. Towers (B)

Fig. 2. Twenty levels used in the Virtual Tools game. Players choose one of three tools (shown to the right of each level) to place in the scene to get a red
object into the green goal area. Black objects are fixed, while blue objects also move; gray regions are prohibited for tool placement. Levels denoted with
A/B labels are matched pairs.
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A - Rapid Learning

C - Discovering Effective Use of a Tool

D - Support Principle Discovery and Fine Tuning

B - Strategy Change

Fig. 3. Examples of participants’ behavior on three levels, representative of rapid trial-and-error learning: Initial plans are structured around objects,
followed by exploring to identify more promising strategies and then refining actions until success. Objects start as shown by light blue/red outlines and
follow paths traced out by colored lines. Possible tool choices are shown at Right. (A) In the Catapult level, a useful strategy is often identified immediately
and rapidly fine-tuned. (B) Other participants first try an unsuccessful strategy but then switch to a more viable strategy and refine it. (C) The Launch (B)
level is designed to prevent obvious solutions. This participant may have initially believed the ball would start rolling and attempted to use a tool as a
bridge. When this failed, the participant realized the need to launch the ball but discovered only after several trials how to use a tool in a nonobvious way
to accomplish this, via a hooking motion around the blocking ledge. The participant then took several more trials to fine-tune this action. (D) In the SeeSaw
level, a participant realized on the second attempt the platform must be supported for the ball to roll across and then tried different ways of making this
happen.

discovering different ways to use the tools across a variety of
levels.

SSUP Model We consider the components required to capture
both the flexibility and efficiency of human tool use. We pro-
pose that people achieve flexibility through an internal mental
model that allows them to imagine the effects of actions they
may have never tried before (“simulate”). However, a mental
model alone is not sufficient—there are far too many possible
actions that could be simulated, many of which are uninforma-
tive and unlikely to achieve a specific goal. Some mechanism
for guiding an internal search is necessary to focus on useful
parts of the hypothesis space. We therefore propose people use
structured, object-oriented priors (“sample”) and a rapid belief
updating mechanism (“update”) to guide the search toward
promising hypotheses. We formalize human tool use with these
components in the SSUP model (Fig. 4A).

SSUP is inspired by the theory of “problem solving as search”
(12), as well as Dyna and other model-based policy optimiza-
tion methods (13, 14). Crucially, we posit that structured priors
and physical simulators must already be in place to solve prob-
lems as rapidly as people; thus unlike most model-based policy
optimization methods, we do not perform online updates of the
dynamics model.

We emphasize that we view SSUP as a general modeling
framework for physical problem solving and present here only
one instance of that framework: the minimal model (described
below, with more detail in SI Appendix, section S2) that we think
is needed to capture basic human behavior in the Virtual Tools
game. In the Discussion we highlight ways the model will need to
be improved in future work, as well as aspects of physical reason-
ing that rely on a richer set of cognitive systems going beyond the
framework presented here.

Sample: Object-Based Prior. At a minimum, the actions we should
consider to achieve any goal should have the potential to impact

our environment. We therefore incorporate an object-based
prior for sampling actions. Specifically, the model selects one
of the movable objects in the scene and then chooses an x
coordinate in an area that extends slightly beyond the width
of the object and a y coordinate either above or below that
object (Fig. 4B: sample). For tool choice, we assume partici-
pants are equally likely to choose any of the three tools since
all tools in the game were designed to be unfamiliar to par-
ticipants. Samples from this distribution are used to initialize
search.

Simulate: A Noisy Physics Engine. To determine which sampled
actions are worth trying in the world, we assume people use an
“intuitive physics engine” (15) to flexibly imagine the effects of
their actions. This engine is able to simulate the world forward in
time with approximately correct but stochastic dynamics (16, 17).
Determining the effect of a proposed action therefore involves
applying that action to one’s mental representation and using
the intuitive physics engine to posit the range of ways that action
might cause the world to unfold (18, 19). Here we implement
simulation using a game physics engine with noisy dynamics. Peo-
ple characteristically have noisy predictions of how collisions will
resolve (16), and so for simplicity we assume uncertainty about
outcomes is driven only by noise in those collisions (the direc-
tion and amount of force that is applied between two colliding
objects).∗

Since the internal model is imperfect, to evaluate an action we
produce a small number of stochastic simulations (nsims, set here
at four) to form a set of hypotheses about the outcome. To for-
malize how good an outcome is (the reward of a given action),

*We also considered models with additional sources of physics model uncertainty added
but found that the additional parameters did not improve model fit, so we do not
analyze those models here.
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A

C

B

Fig. 4. (A) The SSUP algorithm. (B) A diagram of the model for the Virtual Tools game. It incorporates an object-based prior, a simulation engine for filtering
proposals, and an update module that suggests new proposals based on observations “in the mind” and from actions taken in the world. (C) Illustration of
the policy π′ evolving while attempting a level. Colored patches represent the Gaussian policy for each tool as indicated by the Belief Color Key.

we borrow an idea from the causal reasoning literature for how
people conceptualize “almost” succeeding (20). Almost succeed-
ing is not a function of the absolute distance an action moved
you toward your goal, but instead how much of a difference that
action made. To capture this, the minimum distance between the
green goal area and any of the red goal objects is recorded; these
values are averaged across the simulations and normalized by the
minimum distance that would have been achieved if no tool had
been added. The reward used in SSUP is 1 minus the normalized
distance, so that closer objects lead to higher reward.

Once the model finds a good enough action (formalized as the
average reward being above some threshold), it takes that action
“in the world.” Additionally, to model time limits for thinking,
if the model considers more than T different action proposals
without acting (set here at five), it takes the best action it has
imagined so far. We evaluate the effect of all parameter choices
in a sensitivity analysis (SI Appendix, Fig. S1).

Update: Learning from Thoughts and Actions. So far, we have
described a way of intelligently initializing a search to avoid con-
sidering actions that will not be useful. But what if the prior still
presents an intractably large space of possible actions?

To tackle this, we incorporate an update mechanism that
learns from both simulated and real experience to guide future
search toward more promising regions of the hypothesis space
(21). This is formally defined as a Gaussian mixture model policy
over the three tools and their positions, π′(s), which represents
the model’s belief about high-value actions for each tool. π′(s)
is initialized with samples from the object-oriented prior and
updated using a simple policy gradient algorithm (22). This algo-

rithm will shape the posterior beliefs around areas to place each
tool, which are expected to move target objects close to the goal
and are therefore likely to contain a solution. Such an update
strategy is useful when it finds high-value actions that are nearby
successful actions, but may also get stuck in local optima where
a successful action does not exist. We therefore use a standard
technique from reinforcement learning: epsilon-greedy explo-
ration. With epsilon-greedy exploration, potential actions are
sampled from the policy 100− ε% of the time and from the prior
ε% of the time. Note that this exploration is used only for propos-
ing internal simulations; model actions are chosen based on the
set of simulation outcomes. This is akin to thinking of something
new, instead of focusing on an existing strategy.

Results
We analyze human performance on the first 20 levels of the
Virtual Tools game and compare humans to the SSUP model
and alternates, including SSUP models with ablations and two
alternate learning baselines. We show that the full SSUP model
best captures human performance. Access to the game and all
data including human and model placements is provided at
https://k-r-allen.github.io/tool-games/.

Human Results. Experiments were approved by the Mas-
sachusetts Institute of Technology Committee on the Use of
Humans as Experimental Subjects under protocol 0812003014.
Participants were notified of their rights before the experiment,
were free to terminate participation at any time by closing the
browser window, and were compensated monetarily for their
time.
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We recruited 94 participants through Amazon Mechanical
Turk and asked each participant to solve 14 levels: all 8 of the
unmatched levels and one variation of each of the 6 matched
pairs (randomly selected).

Participants could choose to move on once a problem was
solved or after 2 min had passed. See SI Appendix, section S1
for further details.

The variation in difficulty between levels of the game was sub-
stantial. Participants showed an average solution rate of 81%
(SD = 19%), with the range covering 31% for the hardest level
to 100% for the easiest. Similarly, participants took an average of
4.5 actions (SD = 2.5) for each level, with a range from 1.5 to 9.4
average attempts. Even within trials, there was a large amount of
heterogeneity in the number of actions participants used to solve
the level. This would be expected with “rapid trial-and-error”
learning: Participants who initially tried a promising action would
solve the puzzle quickly, while others explored different actions
before happening on promising ones (e.g., Fig. 3).

Behavior differed across all six matched level pairs. We study
whether these subtle differences do indeed affect behavior,
even without feedback on the first action, by asking whether
we can identify which level variant each action came from.
We find these actions are differentiable across matched lev-
els in “Shafts,” “Prevention,” “Launch,” and “Table” on the
first attempt, but not “Falling” or “Towers” (see SI Appendix,
Fig. S11 and section S6A for details). However, participants
required a different number of actions to solve every level (all
ts > 2.7, ps < 0.01). This suggests that people are paying atten-
tion to subtle differences in the scene or goal to choose their
actions.

Model Results. We investigate several metrics for comparing the
models to human data. First, we look at how quickly and how
often each model solves each level and whether that matches
participants. This is measured as the correlation and root-mean-
square error (RMSE) between the average number of partici-
pant attempts for each level and the average number of model
attempts for each level and the correlation and RMSE between
human and model solution rates. The SSUP model explains the
patterns of human behavior across the different levels well (SI
Appendix, Table S2). It uses a similar number of attempts on each
level (r =0.71; 95% CI= [0.62, 0.76]; mean empirical attempts
across all levels, 4.48; mean model attempts, 4.24; Fig. 5A)
and achieves similar accuracy (r =0.86; 95% CI= [0.76, 0.89];
Fig. 5B).

Across many levels, the SSUP model not only achieves the
same overall solution rate as people, but also approaches it at
the same rate. We measure this by looking at cumulative solu-
tion rates—over all participants or model runs, what proportion
solved each level within X placements—and find that people and
the model often demonstrate similar solution profiles (Fig. 6A;
see SI Appendix, section S6B for quantitative comparison).

We can look in more detail at how the model accomplishes this
by comparing both the first actions that people and the model
take and the actions that both take to solve a level (Fig. 6B).
Like our human participants, the model takes significantly dif-
ferent actions on the first attempt between matched level pairs
(SI Appendix, section S6A). More generally, both people and
the model will often begin with a variety of plausible actions
(e.g., Catapult). In some cases, both will attempt initial actions
that have very little impact on the scene [e.g., SeeSaw and Pre-
vention (B)]; this could be because people cannot think of any
useful actions and so decide to try something, similar to how the
model can exceed its simulation threshold. However, in other
cases, the model’s initial predictions diverge from people, and
this leads to a different pattern of search and solutions. For
instance, in Falling (A), the model quickly finds that placing
an object under the container will reliably tip the ball onto the
ground, but people are biased to drop an object from above.
Because of this, the model often rapidly solves the level with an
object below, whereas a proportion of participants find a way to
flip the container from above; this discrepancy can also be seen in
the comparison of number of attempts before the solution, where
the model finds a solution quickly, while people take a good deal
longer (Fig. 5A). For comparisons of the first and last actions
across all levels, see SI Appendix, Fig. S11.

Model Comparisons on Virtual Tools. We compare the full SSUP
model against a set of six alternate models. Three models inves-
tigate the contribution of each SSUP component by removing
the prior, simulation, or updating individually. Two models pro-
pose alternate solution methods: learning better world models
rather than learning over actions (parameter tuning) or replac-
ing the prior and simulator with a learned proposal mechanism
(Deep Q Network [DQN, ref. 23] + updating). The parameter
tuning alternate model uses inference to learn object densities,
frictions, and elasticities from observed trajectories. The learned
proposal mechanism corresponds to a model-free deep rein-
forcement learning agent (23) which is trained on a set of 4,500
randomly generated levels of the game (SI Appendix, section S5)

1. Basic
6. SeeSaw
11. Launch (A)
16. Shafts (B)

2.Bridge
7. Unbox
12. Launch (B)
17. Table (A)

3. Catapult
8. Unsupport
13. Prevention (A)
18. Table (B)

4. Chaining
9. Falling (A)
14. Prevention (B)
19. Towers (A)

5. Gap
10. Falling (B)
15. Shafts (A)
20. Towers (B)

A B C

Fig. 5. (A) Comparison of average number of human participants’ attempts for each level with average number of attempts for the SSUP model. Bars
indicate 95% confidence intervals on estimates of the means. (B) Comparison of human participants’ accuracy on each trial versus the accuracy of the SSUP
model. (C) Comparison of human participants’ accuracy to all alternate models. Numbers correspond to the trials in Fig. 2.
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and then updated online for each of the 20 testing levels using
the same mechanism as SSUP. This model has substantially more
experience with the environment than other models and serves
as a test of whether model-free methods can make use of this
experience to learn generalizable policies that can guide rapid
learning. Finally, we compare to a “guessing” baseline for per-
formance if an agent were to simply place tools randomly. See
Fig. 5C and SI Appendix, Table S2 for these comparisons.

Eliminating any of the three SSUP components causes a
significant decrease in performance (measured as deviation
between empirical and model cumulative solution curves; all
bootstrapped ps < 0.0001; see SI Appendix, section S6B and
Fig. S6 for further details). The reduced models typically require
more attempts to solve levels because they are searching in the
wrong area of the action space (no prior), attempting actions that
have no chance of being successful (no simulation), or do not
guide search toward more promising areas (no updating).

DQN + updating performs worst of all plausible alternate
models, using the most actions and solving levels at a rate barely
over chance. Because this is equivalent to the no simulation
model with a different prior, its poor performance suggests
that generalized action policies cannot easily be learned from
repeatedly playing similar levels (SI Appendix, section S5).

Because the parameter tuning model is equivalent to the no
updating model except that the properties of the dynamics model
can be learned in parameter tuning, comparing those two mod-
els allows us to test whether we need to assume that people are
learning the dynamics of the world in this game. The fact that
both models perform roughly equivalently (Fig. 5C) suggests that
we do not need this assumption here.

Finally, we quantified how well each model captured the
particular actions people took. Due to heterogeneity in partici-
pants’ responses, we were unable to cleanly differentiate models’

performance except to find that the DQN + updating model
underperformed the rest (SI Appendix, section S6C). However,
no model reached the theoretical noise ceiling, suggesting com-
ponents of the SSUP framework could be improved to better
explain participants’ actions (Discussion).

Validation on Novel Levels. We conducted a second experiment to
test whether the models generalize to novel levels and physical
concepts without tuning hyperparameters. For this experiment,
we created 10 new levels: 6 novel level types and 4 variants of
the originals (Fig 7A), testing an independent sample of 50 par-
ticipants on all levels. The 6 novel level types were designed
to test new physical strategies, including balancing, breaking,
and removing objects from a ball’s path. All other experimental
details were identical to the main experiment.

Without tuning any model parameters, we find a good corre-
spondence between human and model solution rates (Fig. 7B)
and a strong correlation between the model’s performance and
human performance across number of placements (Fig. 7C,
r =0.85) and accuracy (Fig. 7D, r =0.95). Similar to the main
experiment, we find a decrement in performance if the prior or
simulation is removed or for the DQN + updating model (all
bootstrapped ps < 0.0001; SI Appendix, Fig. S7). However, while
numerically worse, we do not find a reliable difference if the
update mechanism is removed (p=0.055) or swapped for model
learning (p=0.346), suggesting that the particular reward func-
tion or update procedure might be less applicable to these levels
(SI Appendix, section S6B).

Discussion
We introduce the Virtual Tools game for investigating flexible
physical problem solving in humans and machines and show that
human behavior on this challenge expresses a wide variety of
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Fig. 6. (A) Cumulative solution rate over number of placements for participants vs. the SSUP model. (B) Distribution of model actions (background) versus
human actions (points) on the first and last attempts of the level for a selection of four levels. The distribution of model actions is estimated based on fitting
a kernel density estimate to the actions taken by the model across 250 simulations. Colors indicate the tool used, with the tools and associated colors shown
at Right of each level. In most levels, the SSUP model captures the evolution of participants’ solutions well, including the particular actions chosen; in the
few cases that it differs, there is no alternative model that systematically explains these differences.
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trial-and-error problem-solving strategies. We also introduce a
model for human physical problem solving: sample, simulate,
update. The model presumes that to solve these physics prob-
lems, people rely on an internal model of how the world works.
Learning in this game therefore involves condensing this vast
world knowledge to rapidly learn how to act in each instance,
using a structured trial-and-error search.

Model Limitations. Although the SSUP model we used solves
many of the levels of the Virtual Tools game in a human-like
way, we believe that this is still only a first approximation to the
rich set of cognitive processes that people bring to the task. In
particular, there are at least two ways in which the model is insuf-
ficient: its reliance on very simple priors and its planning and
generalizing only in the forward direction.

We can see the limits of the object-based prior in the Falling
(A) level (Fig. 5B): People are much less likely to consider plac-
ing an object underneath the container to tip it over. Instead,
many people try to tip it over from above, even though this is
more difficult. In this way, people’s priors over strategies are con-
text specific, which causes them to be slower than the model in
this level. In other cases, this context specificity is helpful: For
instance, in the hypothetical level shown in Fig. 8A, there is a
hole that one of the tools fits suspiciously perfectly into. Many
people notice this coincidence quickly, but because the model
cannot assess how tools might fit into the environment without
running a simulation, it succeeds only 10% of the time. In future
work, a more complex prior could be instantiated in the SSUP
framework, but it remains an open question how people might
form these context-specific priors or how they might be shaped
over time via experience.

People show greater flexibility than our model in the ability to
work backward from the goal state to find more easily solvable

subgoals (24). In the hypothetical level in Fig. 8B, the catapult is
finicky, which means that most catapulting actions will not make
it over the barrier and therefore will never hit the ball on the
left. Instead, the easiest way to increase the objective function is
by the incorrect strategy of knocking the ball on the right to get
close to the goal, and therefore the model solves the level only
8% of the time. Working backward to set the first subgoal of
launching the ball over the barrier would prevent getting stuck
with knocking the ball as a local minimum. From an engineer-
ing standpoint, creating subgoals is natural with discrete problem
spaces (12), but it is less clear how these might be discovered in
the continuous action space of the Virtual Tools game.

Related Cognitive Systems. There is an extensive body of research
into the cognitive systems that underlie the use of real-world
tools, including understanding how to manipulate them and
knowing their typical uses (e.g., refs. 3, 4, 10, and 25). Here
our focus was on “mechanical knowledge” of tools: how to use
objects in novel situations. However, in real-world tool use,
these systems work together with motor planning and semantic
knowledge of tools. Future work can focus on these links, such
as how novel tools become familiar or how our motor limits
constrain the plans we might consider.

The Virtual Tools game presents a problem-solving task that
blends facets of prior work, but encompasses a novel challenge. To
rapidly solve these problems requires good prior knowledge of the
dynamics—unlike complex problem solving in which the dynam-
ics are learned in an evolving situation (26)—and further itera-
tion once a promising solution is considered—unlike the “aha”
moment that leads immediately to a solution in insight problem
solving (27, 28). Unlike in traditional model-based or model-free
reinforcement learning, in this task people bring rich models of
the world that they can quickly tailor to specific, novel problems.

A

B

C

D

A1. Balance

A6. Trap

A2. Collapse

A7. Basic (v2)

A3. Remove

A8. Falling (v2)

A4. Shove

A9. Launch (v2)

A5. Spiky

A10. Table (v2)

Fig. 7. Results on 10 additional trials. (A) Trials used for the second experiment. (B) The cumulative solution rate for participants and the SSUP model. (C)
Comparison of the number of human and model actions by trial. (D) Comparison of human and model accuracy on each trial.
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Fig. 8. Two problems that demonstrate limitations of the current model. (A) A “suspicious coincidence” that one tool fits perfectly in the hole. (B) Creating
a “subgoal” to launch the ball onto the other side is useful.

Distilling rich world knowledge to useful task knowledge is
necessary for any agent interacting with a complex world. One
proposal for how this occurs is “learning by thinking” (29): trans-
lating knowledge from one source (internal models of physics) to
another, more specific instantiation (a mapping between actions
and outcomes on this particular level). We show how SSUP
instantiates one example of learning by thinking: by training a
policy with data from an internal model. Evidence for this sort
of knowledge transfer has been found in people (30, 31), but
has focused on simpler discrete settings in which the model and
policy are jointly learned.

Virtual Tools as an AI Challenge. In preliminary experiments with
model-free reinforcement learning approaches (23), we found
limited generalization with inefficient learning across almost all
of the Virtual Tools levels (SI Appendix, section S5) despite
significant experience with related levels.

Based on our human experiments, we believe that model-
based approaches will be required to be able to play games like
Virtual Tools. Such approaches are becoming increasingly pop-
ular in machine learning (32), especially when combined with
“learning-to-learn” techniques that can learn to adapt quickly to
new tasks (33, 34). Learning these models remains challenging,
but approaches that incorporate added structure have excelled in
recent years (35, 36). Within the AI and robotics communities,
model-based methods are already popular (9, 37, 38). Remain-
ing challenges include how to learn accurate enough models that
can be used with raw sensor data (39) and how to handle dynamic
environments.

Virtual Tools adds to a growing set of environments that test
artificial agents’ abilities to predict and reason using physics,
such as the concurrently developed physical reasoning (PHYRE)
benchmark (40) and others (41–43). In contrast, our focus is on
providing problems that people find challenging but intuitive,
where solutions are nonobvious and do not rely on precise knowl-
edge of world dynamics. By contributing human data to compare
artificial and biological intelligence, we hope to provide a testbed
for more human-like artificial agents.

Future Empirical Directions. This work provides an initial foray
into formalizing the computational and empirical underpinnings
of flexible tool use, but there remains much to study. For
instance, we do not find evidence that people learn more about
the world, perhaps because there is little benefit to additional
precision here. But there are cases where learning the dynamics
is clearly helpful (e.g., discovering that an object is abnormally
heavy or glued down), and we would expect people to update
their physical beliefs in these cases. When and in what ways
people update their internal models to support planning is an
important area of study.

Children can discover how to use existing objects earlier than
they can make novel tools (10), suggesting that tool creation is
more challenging than tool use. Yet it is the ability to make and
then pass on novel tools that is theorized to drive human culture
(44). It is therefore important to understand not just how peo-
ple use tools, but also how they develop and transmit them, which
we can study by expanding the action space of the Virtual Tools
game.

Conclusion
Understanding how to flexibly use tools to accomplish our goals is
a basic and central cognitive capability. In the Virtual Tools game,
we find that people efficiently use tools to solve a wide variety of
physical problems. We can explain this rapid trial-and-error learn-
ing with the three components of the SSUP framework: rich prior
world knowledge, simulation of hypothetical actions, and the abil-
ity to learn from both simulations and observed actions. We hope
this empirical domain and modeling framework can provide the
foundations for future research on this quintessentially human
trait: using, making, and reasoning about tools and more generally
shaping the physical world to our ends.
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