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Abstract

We present an improved method for symbolic regression that seeks to fit data to
formulas that are Pareto-optimal, in the sense of having the best accuracy for a given
complexity. It improves on the previous state-of-the-art by typically being orders
of magnitude more robust toward noise and bad data, and also by discovering many
formulas that stumped previous methods. We develop a method for discovering
generalized symmetries (arbitrary modularity in the computational graph of a
formula) from gradient properties of a neural network fit. We use normalizing
flows to generalize our symbolic regression method to probability distributions
from which we only have samples, and employ statistical hypothesis testing to
accelerate robust brute-force search.

1 Introduction
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Figure 1: Our symbolic regression of data on how kinetic energy depends on mass, velocity and the
speed of light discovers a Pareto-frontier of four formulas that are each the most accurate given their
complexity. Convex corners reveal particularly useful formulas, in this case Einstein’s formula and
the classical approximation mv2/2.

A central challenge in science is symbolic regression: discovering a symbolic expression that provides
a simple yet accurate fit to a given data set. More specifically, we are given a table of numbers,
whose rows are of the form {x1, ..., xn, y} where y = f(x1, ..., xn), and our task is to discover the
correct symbolic expression (composing mathematical functions from a user-provided set) for the
unknown mystery function f , optionally including the complication of noise and outliers. Science
aside, symbolic regression has the potential to replace some inscrutable black-box neural networks
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by simple yet accurate symbolic approximations, helping with the timely goal of making high-impact
AI systems more interpretable and reliable [1–5].

Symbolic regression is difficult because of the exponentially large combinatorial space of symbolic
expressions. Traditionally, symbolic regression has relied on human intuition, leading to the discovery
of some of the most famous formulas in science. More recently, there has been great progress toward
fully automating the process [6–26], and open-source software now exists that can discover quite
complex physics equations by combining neural networks with techniques inspired by physics and
information theory [25]. The goal of this paper is to further improve this state-of-the-art, by making
three main contributions:

1. We use learned neural-network gradients to discover and exploit modularity in the function’s
computational graph.

2. We use statistical hypothesis testing and recursive composition of description-length-based
Pareto-frontiers to accelerate and robustify the symbolic regression.

3. We use normalizing flows to enable regression of probability distributions from samples.

We describe our symbolic regression algorithm in Section 2 and test it with numerical experiments in
Section 3.

2 Method

Our symbolic regression algorithm uses a divide-and-conquer approach as in [25]. We directly solve
a mystery in two base cases: if the mystery function f(x1, ..., xn) is a low-order polynomial or if it is
simple enough to be discovered by brute-force search. Otherwise, we recursively try the strategies
that we will now describe for replacing it by one or more simpler mysteries, ideally with fewer input
variables.

2.1 Leveraging graph modularity against the curse of dimensionality
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Figure 2: All functions can be represented as tree graphs whose nodes represent a set of basic
functions (middle panel). Using a neural network trained to fit a mystery function (left panel), our
algorithm seeks a decomposition of this function into others with fewer input variables (right panel),
in this case of the form f(x, y, z) = g[h(x, y), z] .

When we define and evaluate a mathematical function, we typically represent it as composed of some
basis set S of simpler functions. As illustrated in Figure 2 (middle panel), this representation can
be specified as a graph whose nodes contain elements of S. The most popular basis functions in the
scientific literature tend to be functions of two variables (such as + or ×), one variable (such as sin
or log) or no variables (constants such as 2 or π). For many functions of scientific interest, this graph
is modular in the sense that it can be partitioned in terms of functions with fewer input variables, as
in Figure 2 (right panel).

A key strategy of our symbolic regression algorithm is to recursively discover such modularity, thereby
reverse-engineering the computational graph of a mystery function, starting with no information about
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Figure 3: Examples of graph modularity that our algorithm can auto-discover. Lines denote real-
valued variables and ovals denote functions, with larger ones being more complex.

it other than an input-output data table. This is useful because there are exponentially many ways to
combine n basis functions into a module, making it extremely slow and difficult for brute-force or
genetic algorithms to discover the correct function when n is large. Our divide-and-conquer approach
of first breaking the function into smaller modules with smaller n that can be solved separately thus
greatly accelerates the solution. We implement this modularity discovery algorithm in two steps:

1. Use the user-provided data table to train a neural network fNN(x) that accurately approxi-
mates the mystery function f(x).

2. Perform numerical experiments on fNN(x) to discover graph modularity.

Specifically, we test for the six types of graph modularity illustrated in Figure 3 and listed in
Table 1, and choose between the discovered candidates as described in Section 2.2. Our method
for discovering separability is described in [25]. As we will see below, all our other types of graph
modularity (compositionality, symmetry and generalized additivity) can be revealed by ∇f , the
gradient of our mystery function f .

Compositionality Let us first consider the case of compositionality (Figure 3, top right), where
f(x) = g(h(x)) and h is a scalar function simpler than f in the sense of being expressible with a
smaller graph as in Figure 3. By the chain rule, we have

∇f(x) = g′(h(x))∇h(x), so ∇̂f = ±∇̂h, (1)

where hats denote unit vectors: ∇̂f ≡ ∇f/|∇f |, etc. This means that if we can discover a function h
whose gradient is proportional to that of f (which we will describe a process for in Section 2.2), then
we can simply replace the variables x in the original mystery data table by the single variable h(x)
and recursively apply our AI Feynman algorithm to the new one-dimensional symbolic regression
problem of discovering g(h).

Generalized symmetry Let us now turn to generalized symmetry (Figure 3, bottom left), where
k of the n arguments enter only via some scalar function h of them. Specifically, we say that an
f has generalized symmetry if the n components of the vector x ∈ Rn can be split into groups
of k and n − k components (which we denote by the vectors x′ ∈ Rk and x′′ ∈ Rn−k) such that
f(x) = f(x′, x′′) = g[h(x′), x′′] for some function g. By the chain rule, we have

∇x′f(x′, x′′) = g1[h(x′), x′′]∇h(x′), so ∇̂x′f = ±∇̂h, (2)

where g1 denotes the derivative of g with respect to its first argument. This means that ∇̂x′f(x′, x′′) is
independent of x′′, which it would not be for a generic function f . x′′-independence of the normalized
gradients v̂(x′, x′′) ≡ ∇̂x′f(x′, x′′) thus provides a smoking gun signature of generalized symmetry.
Whereas our compositionality discovery above requires discovering an explicit function h, we can
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Table 1: Simplification strategies
Name Property Action
Negativity f(x1, x2, ...) < 0 Solve for g ≡ −f
Positivity f(x1, x2, ...) > 0 Solve for g ≡ ln f

Additive f(x1, ..., xk, xk+1, ..., xn) =
separability g(x1, ..., xk) + h(xk+1, ..., xn) Solve for g & h

Multiplicative f(x1, ..., xk, xk+1, ..., xn) =
separability g(x1, ..., xk)h(xk+1, ..., xn) Solve for g & h

Simple symmetry f(x1, x2, ...) = g(x1 � x2, ...), � ∈ {+,−,×, /} Solve for g

Compositionality f(x1, ..., xn) = g(h(x1, ..., xn)), h simpler than f Find h with∇h ∝ ∇f
Generalized f(x1, ..., xk, xk+1, ..., xn) = Find h satisfying
symmetry g[h(x1, ..., xk), xk+1, ..., xn] h,i ∝ f,i, i = 1, ..., k

Generalized f(x1, x2) = F [g(x1) + h(x2)] Solve for F , g & h
additivity

Zero-snap f̃ has numerical parameters p Replace pi by 0

Integer snap f̃ has numerical parameters p Round pi to integer

Rational snap f̃ has numerical parameters p Round pi to fraction

Reoptimize f̃ has numerical parameters p Reoptimize p to
minimize inaccuracy

discover generalized symmetry without knowing h, thus only performing the time-consuming task of
searching for an h satisfying equation (2) after determining that a solution exists. The Supplementary
Material details how we numerically test for x′′-independence of v̂(x′, x′′).

Generalized additivity If f is a function of two variables, then we also test for generalized
additivity (Figure 3, bottom right), where f(x1, x2) = F [g(x1) + h(x2)]. If we define the function

s(x1, x2) ≡ ∂f/∂x1
∂f/∂x2

, then s(x1, x2) =
g′(x1)

h′(x2)
(3)

if f satisfies the generalized additivity property. In other words, we simply need to test if s is
of the multiplicatively separable form s(x1, x2) = a(x1)b(x2), and we do this using a variant of
the separability test described in [25]. The Supplementary Material details how we perform this
separability test numerically.

2.2 Robustness through recursive Pareto-optimality

As illustrated in Figure 1, the goal of our symbolic regression of a data set is to approximate f(x)

by functions f̃(x) that are not only accurate, but also simple, in the spirit of Occam’s razor. As
in [10], we seek functions that are Pareto-optimal in the sense of there being no other function that is
both simpler and more accurate. We will adopt an information-theoretical approach and use bits of
information to measure lack of both accuracy and simplicity.

For accuracy, we wish the vector ε of prediction errors εi ≡ yi − f̃(xi) to be small. We quantify this
not by the mean-squared error 〈ε2i 〉 or max-error max |εi| as in [10, 25], but by the MEDL, the mean
error-description-length 〈Ld(εi)〉 defined in Table 2. As argued in [27] and illustrated in Figure 4,
this improves robustness to outliers. We analogously quantify complexity by the description length
Ld defined as in [27], summarized in Table 2.

Ld can be viewed as a crude but computationally convenient approximation of the number of bits
needed to describe each object, made differentiable where possible. We choose the precision floor
ε ≡ 2−30 ∼ 10−9. For function complexity, both input variables and mathematical functions
(e.g., cos and +) count toward n and k. For example, the classical kinetic energy formula has
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Table 2: Complexity definitions
Object Symbol Description length Ld
Natural number n log2 n
Integer m log2(1 + |m|)
Rational number m/n Ld(m) + Ld(n) = log2[(1 + |m|)n]
Real number r log+

(
r
ε

)
, log+(x) ≡ 1

2 log2

(
1 + x2

)
Parameter vector p

∑
i Ld(pi)

Parametrized function f(x; p) Ld(p) + k log2 n; n basis functions appear k times
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Figure 4: When fitting a function (the right panel shows the example ax3

ex/b−1 ) to data with outliers,
minimizing mean-squared-error (MSE) biases the curve toward the outliers (here finding a ≈ 0.89,
b ≈ 1.056), whereas minimizing mean error description length (MEDL) ignores the outliers and
recovers the correct answer a = b = 1. Left panel compares MSE and MEDL loss functions for
b = 1.

Ld(“m× v× v/2′′) = Ld(2) + k log2 n = log2 3 + 6 log2 4 ≈ 13.6 bits, since the formula contains
n = 4 basis functions (m, v, × and /) used k = 6 times.

We wish to make the symbolic regression implementation of [25] more robust; it sometimes fails
to discover the correct expression because of noise in the data or inaccuracies introduced by the
neural network fitting. The neural network accuracy may vary strongly with x, becoming quite
poor in domains with little training data or when the network is forced to extrapolate rather than
interpolate, and we desire a regression method robust to such outliers. We expect our insistence on
Pareto-optimal functions in the information plane of Figure 1 to increase robustness, both because
〈Ld(εi)〉 is robust (Figure 4) and because noise and systematic errors are unlikely to be predictable by
a simple mathematical formula with small Ld. More broadly, minimization of total exact description
length (which Ld crudely approximates) provably avoids the overfitting problem that plagues many
alternative machine-learning strategies [28–30].

Speedup by recursive Pareto frontier composition When recursively symbolically regressing
various modules (see Figure 2), we end up with a Pareto frontier of candidate functions for each one.
If there are ni functions on the ith frontier, then combining them all would produce

∏
i ni candidates

f̃(x) for the original function f(x). We speed up our algorithm by Pareto-pruning after each merge
step: whenever two modules are combined (via composition or multiplication, say), the resulting
n1n2 functions are pruned by removing all functions that are Pareto-dominated by another function
that is both simpler and more accurate. Pruning models on the Pareto frontier significantly reduces the
number of models that need to be evaluated, since in typical scenarios, the number of Pareto-optimal
points grows only logarithmically with the total number of points.

Robust speedup of brute-force graph search with hypothesis testing Our recursive reduction
of regression mysteries into simpler ones terminates at the base case when the mystery function
has only one variable and cannot be further modularized. As in [25], we subject these (and also
all multivariate modules) to two solution strategies, polynomial fitting up to some degree (4 by
default) and brute force search, and then add all candidates functions to the Pareto plane and prune
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as above. The brute-force search would, if run forever, try all symbolic expressions by looping
over ever-more-complex graphs (the middle panel of Figure 2 shows an example) and over function
options for each node.

Our brute-force computation of the Pareto frontier simply tries all functions fk(x) (k = 1, 2...) in
order of increasing complexity Ld(fk) and keeps only those with lower mean error-description-length
dk ≡ 1

N

∑N
i=1 dki than the previous record holder, where dki ≡ Ld[yi − fk(xi)]. When instead

fitting normalized gradient vectors ∇̂f as in Section 2.1, we define dki ≡ Ld[1− |ŷi · ∇̂fk(xi)|] to
handle the sign ambiguity. The bad news is that computing dk exactly is slow, requiring evaluation
of fk(xi) for all N data points xi. The good news is that this is usually unnecessary, since for the
vast majority of all candidate functions, it becomes obvious that they provide a poor fit after trying
merely a handful of data points. We therefore accelerate the search via the following procedure.
Before starting the loop over candidate functions, we sort the data points in random order to be
able to interpret the numbers dki as random samples from a probability distribution whose mean is
the sought-for dk and whose standard deviation is σk. Let dk∗ and σk∗ denote the corresponding
quantities that were computed for the previous best-fit function we added to the Pareto frontier. We
make the simplifying approximations that σk = σk∗ and that all errors are uncorrelated, so that the
loss estimate from the first m data points d̄km ≡ 1

m

∑m
i=1 dki has mean dk and standard deviation

σk∗/
√
m. We now test our candidate function fi on one data point at a time and reject it as soon as

z > ν, where z ≡
√
m
d̄km − dk∗

σk∗
, (4)

where ν is a hyperparameter that we can interpret as the “number of sigmas" we require to rule out
a candidate function as viable when its average error exceeds the previous record holder. We find
that ν = 10 usually works well, generically requiring no more than a handful of evaluations m per
candidate function asymptotically. We can further increase robustness by increasing ν at the price of
longer runtime.

Speedup by greedy search of simplification options We do not a priori know which of the
modular decompositions from Figure 3 are most promising, and recursively trying all combinations
of them would involve trying exponentially many options. We therefore accelerate our algorithm
with a greedy strategy where at each step we compare the decomposition in a unified way and try
only the most accurate one — our runtime thus grows roughly linearly with n, the number of input
variables. f(x) stays constant along constant-h curves for generalized symmetry, simple symmetry
(where h(x, y) = x+ y, x− y, xy or x/y) and generalized additivity (where h(x, y) = a(x) + b(y)).
We thus test the accuracy of all such h-candidates by starting at a datapoint xi and computing an error
εi ≡ f(x̃i)− f(xi) for some x̃i satisfying h(x̃i) = h(xi). For additive and multiplicative separability,
we follow [25] by examining a rectangle in parameter space and predicting f at the fourth corner
from the other three, defining εi as the mismatch. The supplementary material details how our test
points are chosen.

After this greedy recursive process has terminated, we further improve the Pareto frontier in two ways.
We first add models where rational numbers are replaced by reals and optimized by gradient descent
to fit the data. We then add models with zero-snap, integer-snap and rational-snap from Table 1
applied to all real-valued parameters as described in [27], pruning all Pareto-dominated models after
each step. For example, if there are 3 real-valued parameters, integer-snap generates 3 new models
where the 1, 2 and 3 parameters closest to integers get rounded, respectively.

2.3 Leveraging normalizing flows to symbolic regress probability distributions

An important but more difficult symbolic regression problem is when the unknown function f(x)
is a probability distribution from which we have random samples xi rather than direct evaluations
yi = f(xi). We tackle this by adding preceding the regression by a step that estimates f(x). For this
step, we use the popular normalizing flow technique [31–35], training an invertible neural network
mapping x 7→ x′ ≡ g(x) such that x′ has a multivariate normal distribution n(x′) as illustrated in
Figure 5. We then obtain our estimator fNN(x) = n[g(x)]|J |, where J is the Jacobian of g.

We find rational-quadratic neural spline flows (RQ-NSF) suitable for relatively low-dimensional
applications due to their enhanced expressivity. Specifically, we used three steps of the RQ-NSF with
RQ-NSF (C) coupling layers as described in [34], parametrized by three 16-neuron softplus layers,
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Figure 5: A normalizing flow g maps samples from a probability distribution f (right) into a normal
distribution (left), enabling an estimate (middle) of f , here illustrated for the n = 2, l = 1, m = 0
hydrogen orbital from Table 5.

Table 3: Robustness to noise
New robustness 10− 5 10− 4 10− 3 10− 2 10− 1 Total

O
ld

ro
bu

st
ne

ss 10− 5 0 1 2 2 0 5
10− 4 0 1 3 5 12 21
10− 3 0 0 5 6 24 35
10− 2 0 0 0 2 37 39
Total 0 2 10 15 73 100

trained for 50, 000 epochs with the Adam optimizer. The learning rate was initialized to 3× 10−4

and halved every time the test loss failed to improve for 2500 epochs.

3 Results

We now turn to quantifying the performance of our method with numerical experiments, comparing
it with that of [25] which recently exceded the previous state of-the-art performance of [10]. To
quantify robustness to noise, we add Gaussian noise of standard deviation 10r to yi and determine
the largest integer r < 0 for which the method successfully discovers the correct mystery function
f(x). As seen in Table 3, our method solves 73 of 100 the baseline problems from the Feynman
Symbolic Regression Database [25] with r = −1, and is typically 1-3 orders of magnitude more
robust than that of [25]. Crudely speaking, we found that adding progressively more noise shifted the
most accurate formula straight upward in the Pareto plane (Figure 1) until it no longer provided any
accuracy gains compared with simpler approximations.

To quantify the ability of our method to discover more complex equations, we reran it on all 17
mysteries that [25] tackled and failed to solve. We also tested a dozen new mysteries exhibiting
various forms of graph modularity (see Table 4) that were all chosen before any of them were tested.
Allowing at most two hours of run-time, the method of [25] solved equations 5, 12,...,15, whereas
our new method solved them all, as well as four of the outstanding mysteries from [25] (rows 1-4).
For these first four, our method got the numerical parameters in the right ballpark with rational
approximations, then discovered their exact values through gradient descent.

To quantify the ability of our method to discover probability distributions, we tested it on samples
from the ten distributions in Table 5. As seen in the table, 80% were solved, requiring between 102

and 105 samples xi. The flows trained in about 20 minutes on one CPU, scaling roughly linearly with
sample size and number of network weights. The Supplementary Material details failure modes.

4 Conclusions

We have presented a symbolic regression method that exploits neural networks, graph modularity,
hypothesis testing and normalizing flows. It improves state-of-the-art performance both by being
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Table 4: Test equations exhibiting translational symmetry h = x± y (T), scaling symmetry h = x/y
(S), product symmetry h = xy (P), generalized symmetry (G), multiplicative separability (M),
compositionality (C) and generalized additivity (A).

Equation Symmetries

1 δ = −5.41 + 4.9α−β+γ/χ3χ TC
2 χ = 0.23 + 14.2α+β3γ TS
3 β = 213.80940889

(
1− e−0.54723748542α

)
4 δ = 6.87 + 11

√
αβγ P

5 V =
[
R−11 +R−12 +R−13 +R−14

]−1
I0 cosωt (Parallel resistors) PGSM

6 I0 = V0√
R2+(ωL− 1

ωC )
2

(RLC circuit ) MG

7 I = V0 cosωt√
R2+(ωL− 1

ωC )
2

(RLC circuit) MG

8 V2 = ( R2

R1+R2
− Rx

Rx+R3
)V1 (Wheatstone bridge) SGMA

9 v = c (v1+v2+v3)/c+v1v2v3/c
3

1+(v1v2+v1v3+v2v3)/c2
(Velocity addition) AG

10 v = c (v1+v2+v3+v4)/c+(v2v3v4+v1v3v4+v1v2v4+v1v2v3)/c
3

1+(v1v2+v1v3+v1v4+v2v3+v2v4+v3v4)/c2+v1v2v3v4/c4
(Velocity addition) GA

11 z = (x4 + y4)1/4 (L4-norm) AC
12 w = xyz − z

√
1− x2

√
1− y2 − y

√
1− x2

√
1− z2 − x

√
1− y2

√
1− z2 GA

13 z =
xy+
√

1−x2−y2+x2y2

y
√
1−x2−x

√
1−y2

A

14 z = y
√

1− x2 + x
√

1− y2 A
15 z = xy −

√
1− x2

√
1− y2 A

16 r = a
cot (α/2)+cot (β/2) (Incircle) GMAC

Table 5: Probability distributions and number of samples N required to discover them

Distribution Name Probability distribution N

Laplace distribution 1
2e
−|x| 102

Beta distribution (α = 0.5, β = 0.5) 1
π

1√
x(1−x)

104

Beta distribution (α = 5, β = 2) 30x4(1− x) 104

Harmonic oscillator (n = 2, mω~ = 1) 2√
π
x2e−x

2

105

Sinc diffraction pattern 1
π

(
sin x
x

)2
104

2D normal distribution (correlated) 1√
3π
e−

2
3 (x

2−xy+y2) 103

2D harmonic oscillator (n = 2, m = 1, mω~ = 1) 2
πx

2e−x
2−y2 105

Hydrogen orbital (n = 1, l = 0, m = 0) 1
π e
−2r 103

Hydrogen orbital (n = 2, l = 1, m = 0) 1
16r

2e−r cos2 θ -
Hydrogen orbital (n = 3, l = 1, m = 0) 1

729r
2
(
4− 2r

3

)2
e−

2r
3 cos2 θ -

more robust towards noise and by solving harder problems, including symbolic density estimation.
These core ideas can enable further improvements. For example, gradients can reveal more types of
graph modularity than the Figure 3 examples that we exploited; additional simplification strategies
can be included in the Pareto-optimal recursion; and flow-based regression can be used for regularized
density estimation from sparse high-dimensional data. Larger and more challenging collections of
science-based equations are needed to benchmark and inspire improved algorithms.

Pareto-optimal symbolic regression has the power to not only discover exact formulas, but also
approximate ones that are useful for being both accurate and simple. The mainstream view is that all
known science formulas are such approximations. We live in a golden age of research with ever-larger
datasets produced by both experiments and numerical computations, and we look forward to a future
when symbolic regression is as ubiquitous as linear regression is today, helping us better understand
the relations hidden in these datasets.
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Broader Impact

Who may benefit from this research

Our research presumably has quite broad impact, since discovery of mathematical patterns in data is
a central problem across the natural and social sciences. Given the ubiquity of linear regression in
research, one might expect that there will significant benefits to a broad range of researchers also
from more general symbolic regression once freely available algorithms get sufficiently good.

Who may be put at disadvantage from this research

Although it is possible that some numerical modelers could get their jobs automated away by symbolic
regression, we suspect that the main effect of our method, and future tools building on it, will instead
be that these people will simply discover better models than today.

Risk of bias, failure and other negative outcomes

Pareto-optimal symbolic regression can be viewed as an extreme form of lossy data compression
that uncovers the simplest possible model for any given accuracy. To the extent that overfitting can
exacerbate bias, such model compression is expected to help. Moreover, since our method produces
closed-form mathematical formulas that have excellent interpretability compared to black-box neural
networks, they make it easier for humans to interpret the computation and pass judgement on whether
it embodies unacceptable bias. This interpretability also reduces failure risk.

Another risk is automation bias, whereby people overly trust a formula from symbolic regression
when they extrapolate it into an untested domain. This could be exacerbated if symbolic regression
promotes scientific laziness and enfeeblement, where researchers fit phenomenological models instead
of doing the work of building models based on first principles. Symbolic regression should inform
but not replace traditional scientific discovery.

Although the choice of basis functions biases the discoverable function class, our method is agnostic
to basis functions as long as they are mostly differentiable.

The potentially greatest risk associated with this work does not stem from it failing but from
it succeeding: accelerated progress in symbolic regression, modularity discovery and its parent
discipline program synthesis could hasten the arrival of artificial general intelligence, which some
authors have argued that humanity still lacks the tools to manage safely [5]. On the other hand, our
work may help accelerate research on intelligible intelligence more broadly, and powerful future
artificial intelligence is probably safer if we understand aspects of how it works than if it is an
inscrutable black box.
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Supplementary material

Below we provide additional technical details about how we implement our method and numerical
experiments.

A Testing for generalized symmetry

We showed that generalized symmetry can be revealed by v̂(x′, x′′) being independent of x′′. We will
now describe how we test for such x′′-independence numerically. Given a point xi ∈ Rk from our
data set, we compute a set of normalized gradients v̂j ≡ v̂i(x′i, x′′j ), where x′′j ∈ Rn−k correspond to
a sample of m other data points, and quantify the variation between then by the quantity

V (x) ≡ 1− max
|µ|=1

1

m

m∑
j=1

(µ̂ · v̂j)2 = 1− max
|µ|=1

µ̂tVµ̂, where V ≡ 1

m

m∑
j=1

v̂jv̂
t
j . (5)

We can intuitively interpret the optimal µ̂ as maximally aligned with the vectors v̂j up to a sign.
Equation (5) implies that our variation measure V is simply one minus the smallest eigenvalue of
V, so V ranges from 0 when all v̂j are identical to 1− 1

m when all eigenvalues are equal (equal to
1/m, since tr V = 1). As illustrated in Figure 6, we compute V (xi) for each subset of up to ng input
variables, and select the subset with the smallest median V (xi) as the most promising generalized
symmetry candidate. In our numerical experiments, we set the hyperparameter ng = 3 to save time,
since we do not wish to consider all 2n subsets for large n.

10-8 10-310-410-510-610-7 10-110-2 1
V(x)

Figure 6: Distribution of V (xi) for the function from Figure 2, revealing that evidence for
the generalized symmetry f(x, y, z) = g[h(x, y), z] (shaded distribution) is stronger than for
f(x, y, z) = g[h(x, z), y] (blue curve) or f(x, y, z) = g[h(y, z), x] (red curve). The curves are
shown slightly smoothed for clarity.

B Testing for generalized additivity

We showed that generalized additivity holds when the function s(x1, x2) from Equation (3) is
multiplicatively separable. We will now describe how we test for such separability numerically. If
s(x1, x2) being multiplicative separable is equivalent to f(x1, x2) ≡ ln s(x1, x2) being additively
separable. We numerically quantity this by the and we test the function ln sNN (x1, x2) for additive
separability using the normalized score S defining

S[f ] =
|f,xy|2

|f,xxf,yy|+ |f,xy|2
. (6)

It is easy to see that S[f ] = 0 if f is additively separable functions f , and S[f ] > 0 otherwise. If the
median value of S over all points xi in the dataset, we take thisas evidence for generalized additivity in
the dataset and proceed as below. It is important to use smooth (not, e.g., ReLU) activation functions
in the activation function for this derivative-based test to be useful.

If this property holds, then we recursively apply our algorithm to the two new 1-dimensional symbolic
regression problems of discovering a(x1) and b(x2). If this succeeds and we are able to discover the
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functions g(x1) and h(x2) by symbolically integrating our solutions g′ = a and h′ = 1/b, then we
have reduced the original problem to the same state as when we found compositionality above, now
with h(x1, x2) = g(x1) +h(x2). Just as in that case, we simply replace the variables x in the original
mystery data table by the single variable h(x) and recursively apply our AI Feynman algorithm to the
new 1-dimensional symbolic regression problem of discovering how f depends on h.

If we have determined that generalized additivity holds but the above aforementioned method for
discovering g(x1) + h(x2) fails, we make a second attempt by training a neural network of the
modular form fNN(x1, x2) = F [g(x1) + h(x2)] to fit the data. If this succeeds, we then recursively
apply our AI Feynman algorithm to the three new 1-dimensional symbolic regression problems of
discovering F , g and h.

C Further details on success and failure modes

Our paper reported which symbolic regression problems our method succeeded and failed on. Here
we add specifics on how these successes and failures occurred.

Success definition Given a data set {x1, ..., xn, y}, we use 90% of the data to compute a Pareto-
optimal set of candidate functions f̃i(x), then rank them based on their MEDL accuracy on the
held-back 10% of the data. We count our method as successful only if the top-ranked function
matches the true f(x) exactly, or, if the definition of f involves irrational numerical parameters, if
these parameters are recovered to better than 0.01% relative accuracy.

We considered an equation solved even if the top solution was not in the exact form presented in
our tables, but Mathematically equivalent. For example, our method predicted that Equation (12)
in Table 4 was w = cos[arccos(x) + arccos(y) + arccos(z)], which is mathematically equivalent
within the domain of our provided data set, where x, y, z ∈ [−1, 1].

For the problem of density estimation from samples, our goal was to obtain the correct normalized
probability distributions. The candidate functions on the Pareto-frontier were therefore discarded
unless they were non-negative and normalizable. The surviving candidates then normalized to
integrate to unity by symbolic/numerical integration to obtain the appropriate normalization constant,
and quality-ranked by the surprisal loss function

Li = −
∑

log f̃i(xk)

evaluated on the held-back test data.

Success examples Tables 1 and 2 below show the highest noise level allowing allowing each of the
100 equations from the Feynman Database for Symbolic regression to be solved in the original paper
analyzing it and in the present paper.

For many of the solved equations, the modularity discovery had to be used multiple times in order for
the correct equation to be discovered, reflecting the power of the recursive algorithm. For example,
for the quadruple velocity addition equation in Table 4, generalized symmetry was exploited twice.
First, the code discovered that the first two velocities only enter in the combination v1+v2

1+v1v2
, and these

two variables were replaced by a new variable v12. The same method then discovered that v12 and
v3 only enter in that same combination v12+v3

1+v12v3
, and thus the initial 3 variables v1, v2 and v3 were

replaced by a single variable v123. Now the remaining equation had only 2 variables left, and was
solved by brute force. In principle, this recursive method can be used to discover relativistic addition
of an arbitrary number of velocities, by reducing the number of variables by one at each step.

Failure examples As mentioned in the main text, numerous equations remained unsolved, motivat-
ing further work. In some cases, the main reason for this failure was that the form of the equation did
not allow our method to break it into small enough pieces. For example, for the equation

α3 exp(−α) cos(α) sin(α)(sin(α)2 cos(α)− 1)(β − 5),

our algorithm is able to discover the multiplicative separability into terms including only α and only
β. However, the remaining α-term is too complicated to be solved in a reasonable amount of time by
the brute force code, and none of the graph modularity methods apply because they only help for
functions of more than one variable.
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For other equations, our method fails but not irreparably. For example, for the function

22− 4.2(cos(α)− tan(β)) tanh(γ)/ sin(χ),

our code is able to discover that γ and χ can be separated from the rest of the equation. However,
given that we allow the brute force code to run for only a minute at each iteration, the expression
tanh(γ)/ sin(χ) is not discovered, mainly because we did not include tanh as one of the functions
used, so the brute force would have to write that as e−2x−1

e2x+1 . By allowing the code to run for longer
and experimenting with additional basis functions (such as tanh), it is likely that the code would
solve this and several other mysteries that we reported as failures.

Fitting a normalizing flow for density estimation presents a ‘real-world’ test of the symbolic regression
code, which needs to cope with flow errors. We demonstrated the robustness of the code to more
challenging errors (i.e. not i.i.d. Gaussian); some of the failure modes are investigated and expanded
on below.

It is worth noting that our definition of complexity is dependent on the chosen set of operations and
does not always match our intuition. For example, in fitting the probability distribution

p(r, θ) =
1

16
r2e−r cos2 θ

of election positions in the n = 2, l = 1, m = 0 hydrogen orbital, solutions with θ-dependence
cos (cos (θ)) are preferred over cos2 θ. This is because, up to additive and multiplcative prefactors,
the two formulas differ by at most approximately 2× 10−2 over our parameter range, but given a
set of operations that includes only {×, cos} denoted by "∗" and “C" respectively in reverse Polish
notation, cos (cos (θ)) (encoded as“xCC") is simpler than cos2 θ (encoded as “xCxC ∗ ”). In the
presence of the imprecisions introduced by the normalizing flow, we were unable to perform the
density estimation a level at which the accuracy for the correct cos2 θ was preferred over the simpler
alternative.

Furthermore, more interpretable approximations (e.g. Taylor expansions) are not always favored by
our definition of complexity. For example, in Figure 1, the unfamiliar solution

mc2
(

1

cos v/c
− 1

)
intermediate to the more familiar mv2/2 and mc2

(
1√

1−v2/c2
− 1

)
of can be understood as a

fourth-order approximation about v = 0 of the exact formula. Specifically, mc2
(

1√
1−v2/c2

− 1

)
=

mv2

2 + 3mv4

8c2 + O(v6), and mc2
(

1
cos v/c − 1

)
= mv2

2 + 5mv4

24c2 + O(v6). The Taylor expansions
themselves are not preferred for reasons of complexity.
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Feynman eq. Equation Old Noise tolerance New Noise tolerance
I.6.20a f = e−θ

2/2/
√
2π 10−2 10−1

I.6.20 f = e
− θ2

2σ2 /
√
2πσ2 10−4 10−2

I.6.20b f = e
− (θ−θ1)2

2σ2 /
√
2πσ2 10−4 10−2

I.8.14 d =
√

(x2 − x1)2 + (y2 − y1)2 10−4 10−1

I.9.18 F = Gm1m2
(x2−x1)2+(y2−y1)2+(z2−z1)2

10−5 10−3

I.10.7 m = m0√
1− v2

c2

10−4 10−2

I.11.19 A = x1y1 + x2y2 + x3y3 10−3 10−1

I.12.1 F = µNn 10−3 10−1

I.12.1a K = 1
2
m(v2 + u2 + w2) 10−4 10−1

I.12.2 F = q1q2
4πεr2

10−2 10−1

I.12.4 U = q1
4πεr2

10−2 10−1

I.12.5 F = q2Ef 10−2 10−1

I.12.11 F = q(Ef +Bv sin θ) 10−3 10−1

I.13.12 U = Gm1m2(
1
r2
− 1

r1
) 10−4 10−1

I.14.3 U = mgz 10−2 10−1

I.14.4 U =
kspringx

2

2
10−2 10−1

I.15.3x x1 = x−ut√
1−u2/c2

10−3 10−3

I.15.3t t1 = t−ux/c2√
1−u2/c2

10−4 10−3

I.15.1 p = m0v√
1−v2/c2

10−4 10−1

I.16.6 v1 = u+v
1+uv/c2

10−3 10−2

I.18.4 r = m1r1+m2r2
m1+m2

10−2 10−1

I.18.12 τ = rF sin θ 10−3 10−1

I.18.14 L = mrv sin θ 10−3 10−1

I.24.6 E = 1
4
m(ω2 + ω2

0)x
2 10−4 10−1

I.25.13 Ve =
q
C

10−2 10−1

I.26.2 θ1 = arcsin(n sin θ2) 10−2 10−1

I.27.6 ff = 1
1
d1

+ n
d2

10−2 10−1

I.29.4 k = ω
c

10−2 10−1

I.29.16 x =
√
x21 + x22 − 2x1x2 cos(θ1 − θ2) 10−4 10−3

I.30.3 I∗ = I∗0
sin(nθ/2)
sin(θ/2)

10−3 10−3

I.30.5 θ = arcsin( λ
nd

) 10−3 10−1

I.32.5 P = q2a2

6πε3c
10−2 10−1

I.32.17 P = ( 1
2
εcE2

f )(8πr
2/3)(ω4/(ω2 − ω2

0)
2) 10−4 10−3

I.34.8 ω = qvB
p

10−2 10−1

I.34.10 ω = 1+v/c
1−v/cω0 10−3 10−2

I.34.14 ω = 1+v/c√
1−v2/c2

ω0 10−3 10−3

I.34.27 E = ~ω 10−2 10−1

I.37.4 I∗ = I1 + I2 + 2
√
I1I2 cos δ 10−3 10−2

I.38.12 r = 4πε~2
mq2

10−2 10−1

I.39.10 E = 3
2
pFV 10−2 10−1

I.39.11 E = 1
γ−1

pFV 10−3 10−1

I.39.22 PF = nkbT
V

10−4 10−1

I.40.1 n = n0e
−mgx
kbT 10−2 10−1

I.41.16 Lrad = ~ω3

π2c2(e
~ω
kbT −1)

10−5 10−4

I.43.16 v =
µdriftqVe

d
10−2 10−1

I.43.31 D = µekbT 10−2 10−1

I.43.43 κ = 1
γ−1

kbv
A

10−3 10−1

I.44.4 E = nkbT ln(V2
V1

) 10−3 10−1

I.47.23 c =
√

γpr
ρ

10−2 10−1

I.48.2 E = mc2√
1−v2/c2

10−5 10−3

I.50.26 x = x1[cos(ωt) + α cos(ωt)2] 10−2 10−1

Table 6: Tested Equations, part 113



Feynman eq. Equation Old Noise tolerance New Noise tolerance
II.2.42 P = κ(T2−T1)A

d 10−3 10−1

II.3.24 FE = P
4πr2 10−2 10−1

II.4.23 Ve = q
4πεr 10−2 10−1

II.6.11 Ve = 1
4πε

pd cos(θ)
r2 10−3 10−1

II.6.15a Ef = 3
4πε

pdz
r5

√
x2 + y2 10−3 10−2

II.6.15b Ef = 3
4πε

pd
r3 cos θ sin θ 10−2 10−2

II.8.7 E = 3
5

q2

4πεd 10−2 10−1

II.8.31 Eden =
εE2
f

2 10−2 10−1

II.10.9 Ef = σden
ε

1
1+χ 10−2 10−1

II.11.3 x =
qEf

m(ω2
0−ω2)

10−3 10−2

II.11.7 n = n0(1 +
pdEf cos θ

kbT
) 10−2 10−1

II.11.20 P∗ =
nρp

2
dEf

3kbT
10−3 10−1

II.11.27 P∗ = nα
1−nα/3εEf 10−3 10−1

II.11.28 θ = 1 + nα
1−(nα/3) 10−4 10−2

II.13.17 B = 1
4πεc2

2I
r 10−2 10−1

II.13.23 ρc =
ρc0√

1−v2/c2
10−4 10−2

II.13.24 j =
ρc0v√
1−v2/c2

10−4 10−1

II.15.4 E = −µMB cos θ 10−3 10−1

II.15.5 E = −pdEf cos θ 10−3 10−1

II.21.32 Ve = q
4πεr(1−v/c) 10−3 10−1

II.24.17 k =
√

ω2

c2 −
π2

d2 10−5 10−2

II.27.16 FE = εcE2
f 10−2 10−1

II.27.18 Eden = εE2
f 10−2 10−1

II.34.2a I = qv
2πr 10−2 10−1

II.34.2 µM = qvr
2 10−2 10−1

II.34.11 ω = g_qB
2m 10−4 10−1

II.34.29a µM = qh
4πm 10−2 10−1

II.34.29b E = g_µMBJz
~ 10−4 10−1

II.35.18 n = n0

exp(µmB/(kbT ))+exp(−µmB/(kbT )) 10−2 10−2

II.35.21 M = nρµM tanh(µMBkbT
) 10−4 10−4

II.36.38 f = µmB
kbT

+ µmαM
εc2kbT

10−2 10−1

II.37.1 E = µM (1 + χ)B 10−3 10−1

II.38.3 F = Y Ax
d 10−3 10−1

II.38.14 µS = Y
2(1+σ) 10−3 10−1

III.4.32 n = 1

e
~ω
kbT −1

10−3 10−2

III.4.33 E = ~ω

e
~ω
kbT −1

10−3 10−3

III.7.38 ω = 2µMB
~ 10−2 10−1

III.8.54 pγ = sin(Et~ )2 10−3 10−3

III.9.52 pγ =
pdEf t

~ sin((ω−ω0)t/2)
2

((ω−ω0)t/2)2
10−3 10−1

III.10.19 E = µM
√
B2
x +B2

y +B2
z 10−4 10−1

III.12.43 L = n~ 10−3 10−1

III.13.18 v = 2Ed2k
~ 10−4 10−1

III.14.14 I = I0(e
qVe
kbT − 1) 10−3 10−1

III.15.12 E = 2U(1− cos(kd)) 10−4 10−1

III.15.14 m = ~2

2Ed2 10−2 10−1

III.15.27 k = 2πα
nd 10−3 10−1

III.17.37 f = β(1 + α cos θ) 10−3 10−1

III.19.51 E = −mq4
2(4πε)2~2

1
n2 10−5 10−2

III.21.20 j =
−ρc0qAvec

m 10−2 10−1

Table 7: Tested Equations, part 2.
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