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Abstract

The ability to continuously acquire new knowledge with-
out forgetting previous tasks remains a challenging prob-
lem for computer vision systems. Standard continual learn-
ing benchmarks focus on learning from static iid images
in an offline setting. Here, we examine a more challeng-
ing and realistic online continual learning problem called
online stream learning. Like humans, some AI agents
have to learn incrementally from a continuous temporal
stream of non-repeating data. We propose a novel model,
Hypotheses-driven Augmented Memory Network (HAMN),
which efficiently consolidates previous knowledge using
an augmented memory matrix of ”hypotheses” and re-
plays reconstructed image features to avoid catastrophic
forgetting. Compared with pixel-level and generative re-
play approaches, the advantages of HAMN are two-fold.
First, hypothesis-based knowledge consolidation avoids re-
dundant information in the image pixel space and makes
memory usage far more efficient. Second, hypotheses in
the augmented memory can be re-used for learning new
tasks, improving generalization and transfer learning abil-
ity. Given a lack of online incremental class learning
datasets on video streams, we introduce and adapt two ad-
ditional video datasets, Toybox and iLab, for online stream
learning. We also evaluate our method on the CORe50 and
online CIFAR100 datasets. Our method performs signifi-
cantly better than all state-of-the-art methods, while offer-
ing much more efficient memory usage. All source code and
data are publicly available at https://github.com/
kreimanlab/AugMem

1. Introduction

The world is not stationary. To thrive in evolving envi-
ronments, humans are capable of continual acquisition and

transfer of new knowledge, from a stream of highly tem-
porally correlated visual stimuli over multiple tasks, while
retaining previously learnt experiences [15, 45]. In stan-
dard incremental class continual learning problems, neu-
ral networks are presented with stationary images that are
independent and identically distributed (iid), with multi-
ple presentations of each image within a task [12, 33, 37].
Mimicking human learning experiences, here we tackle a
more challenging and realistic variation of incremental class
learning, named online stream learning, with two salient
characteristics: (a) the input is in the form of video streams
where the data are temporally highly correlated; and (b) dur-
ing online learning, data are presented only once and no re-
peated visits over the old data are allowed within a task.

In online stream learning, AI systems tend to fail to re-
tain good performance across previously learnt tasks [16,
21,32]. Numerous methods for alleviating catastrophic for-
getting have been proposed, the simplest being to jointly
train models on both old and new tasks, which demands a
large amount of resources to store previous training data and
hinders learning of novel data in real time.

Inspired by memory-augmented networks in one-shot
image classification [41], memory retrieval [13], and
video prediction [14], we propose the Hypothesis-driven
Augmented Memory Network (HAMN) for online stream
learning in image classification tasks. The network learns
a set of hypotheses in the augmented memory, such that
the latent representation of an image can be constructed
by a linear combination of the hypotheses. Multi-head
content-based attention allows HAMN to share the aug-
mented memory over multiple image features, further com-
pressing representations in memory and allowing features to
be reconstructed from hypotheses in parallel. Hypothesis-
sharing in the augmented memory also enables transfer
learning and generalization to new tasks. The hypotheses
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Figure 1. Schematics of two online stream learning protocols in the incremental class settings: learning with class iid data (a) and
class instance data (b). In the incremental class setting, for each task, the model has to learn to classify 2 new classes while training for
a single epoch. During testing, the model has to classify images from all seen classes without knowing task identity. In incremental class
iid, within a task, the sequence of images is randomly shuffled, whereas in class instance, the temporal order of images is preserved. See
Online Stream Learning Protocols for descriptions.

learned in previous tasks are stored in the augmented mem-
ory, enabling HAMN to classify new objects.

To prevent catastrophic forgetting, we impose three con-
straints: (i) To preserve encoded hypotheses in augmented
memory, we regularize the network to write new hypothe-
ses into rarely-used locations in memory. (ii) We store the
memory indices activated by samples from previous tasks,
reconstruct these samples from the corresponding hypothe-
ses, and replay the constructed samples during training. (iii)
We apply logit matching [38] during replay to maintain the
learnt class distributions from all previous tasks.

We evaluated our method under two typical online
stream learning protocols (Fig. 1), incremental class iid and
incremental class instance on the CORe50 dataset [30]. Be-
cause there is a lack of online video stream datasets, we
introduce two additional video stream datasets for object
recognition, Toybox [48] and iLab [5], by adapting them to
the online stream learning setting. In addition, to evaluate
the online incremental class setting over long-range tasks,
we also include results on the standard online CIFAR100
dataset [24] consisting of 20 tasks. HAMN is better than
state-of-the-art (SOTA) methods across all four datasets,
ranging from short-range to long-range tasks, and from
static images to video streams, while being more memory-
efficient than other methods. HAMN demonstrates mem-
ory retention and adaptation to new tasks, even while going
through continuous presentation of training examples only
once.

2. Related Works
Online stream learning approaches can be categorized

into (1) weight regularization, and (2) replay methods. Most
weight regularization methods store weights trained on pre-
vious tasks and impose constraints on weight updates for
new tasks [8, 17, 22, 25, 26, 52]. For example, Elastic
Weight Consolidation (EWC) [22] stores parameters, es-
timates their importance for previous tasks, and penalizes
changes on new tasks. Selecting “important” parameters for
previous tasks complicates implementation by necessitating
exhaustive hyper-parameter tuning. Besides, storing the im-
portance of the millions of parameters required by SOTA

recognition models across all previous tasks is costly [49].
Learning without Forgetting (LwF) mitigates this problem
by storing only logits from previous tasks, but its perfor-
mance is inferior to many replay methods. Stable SGD [34]
studied the effect of dropout, learning rate decay, and batch
sizes on widening the tasks’ local minima in previous tasks
and minimizing catastrophic forgetting.

In replay methods, a subset of images or features from
a previous task are stored or generated and later shown to
the model to prevent forgetting [2, 38, 50]. Compared with
weight regularization, replay methods generally lead to en-
hanced performance [35, 38] and reduced memory storage
[8, 31]. Following prototypical contrastive learning [44],
subsequent replay methods regularize network parameters
with evolving prototypes and constrain their relations with
inter and intra class samples [10, 53].

Raw-pixel replay, where images from previous tasks are
stored and replayed, involves redundant information and is
memory-inefficient. Recent works [2, 4] enhance sample
selection in the replay buffer by maximizing diversity or
uncertainty and approximating feasible regions in old tasks.
Relying on limited sets of replay images can also lead to
overfitting. The Bias Correction Method [50] applies a lin-
ear model with validation set replays from old tasks to avoid
the imbalanced data distribution between old and new tasks.
The adaptive aggregation network [28] introduces two types
of residual blocks to balance plasticity and stability dynami-
cally. Our method improves generalization by learning dis-
criminative, information-rich hypotheses in a latent space,
which can then be re-used to construct multiple new sam-
ples for replay and knowledge transfer to new tasks.

To limit storage, generative replay systems complement
new tasks with “pseudo-data” that resemble historical data.
[29, 39, 43]. Deep Generative Replay [43] is a Generative
Adversarial Network that synthesizes training data over all
previously learnt tasks. Generative approaches have suc-
ceeded with simple and artificial datasets but have failed
with more complex inputs [3]. Later work uses bi-level
optimization to generate mnemonics for replay [29]. All
of these generative models work at the pixel-level. Subse-
quent works propose to generate examples at the feature lev-
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els [27, 42, 46]. However, the generative models needed to
create adequate synthetic data tend to be large and memory-
intensive [49].

Previous work (REMIND) [16] showed that replay of la-
tent features using memory indexing is efficient at prevent-
ing catastrophic forgetting. However, REMIND relies on
Product Quantization [20], where a codebook for construct-
ing the memory is pre-computed and fixed. This hinders
adaptability to new tasks. Instead of fixed codebooks, our
method learns a set of discrete hypotheses on the fly and re-
plays constructed samples from the learnt hypotheses based
on a memory indexing mechanism learnt through new tasks.

3. Online Stream Learning Setups
[Protocols] We consider two incremental class settings for
the online stream learning protocols [16] (Fig. 1):
Class-iid: Images are randomly shuffled within each task
but not interspersed among tasks, and are shown only once.
Class-instance: Each class contains short video clips of dif-
ferent objects. In the CORe50 dataset, the clips are pre-
sented one after the other in random order. This introduces
a strong biasing effect of seeing large numbers of images
from the same class in sequence, making stream learning
highly challenging. Thus, in the Toybox and iLab datasets,
we provide a complementary test of stream learning capa-
bilities, finding a mid-point of difficulty between class-iid
and class-instance. On these datasets, the image order al-
ternates on each frame between two clips from different
classes, while preserving the ordering of each clip.
[Datasets] In each video dataset, we used different data/task
orderings for each training run. A global holdout test set of
frame sequences was used for all training runs.
The CORe50 dataset [30] contains images of 50 objects
in 10 classes. Each object has 11 instances, which are 15
second video clips of the object under particular conditions
and poses. We followed [16] in the ordering, training and
testing data splits.

Due to a lack of video datasets for object recognition in
online stream learning, we introduce 2 extra video datasets,
originally used for studying object transformations.
The Toybox dataset [48] contains videos of toy objects
from 12 classes. We used a subset of the dataset contain-
ing 348 toy objects with 10 instances per object, each con-
taining a spatial transformation of that object’s pose. We
sampled each instance at 1 frame per second resulting in
15 images per instance per object. We chose 3 of the 10
instances for our test set, leaving 7 instances for training.
The iLab dataset [5] contains videos of toy vehicles. We
used a subset of the dataset containing 392 vehicle objects
in 14 classes, with 8 backgrounds (instances) per object and
15 images per instance. We chose 2 of the 8 instances per
object for our test set.

To increase number of classes in online incremental class

learning, we included the standard image dataset Online-
CIFAR100 [24]. The dataset is split up into 20 tasks with 5
classes each. All training images within a task are randomly
shuffled and presented only once to all models.

4. Our proposed model (HAMN)

4.1. Overview

HAMN consists of a 2D convolutional neural network (2D-
CNN) coupled with an augmented memory bank (Fig. 2).
The memory matrix stores a fixed number of hypotheses.
HAMN extracts feature maps from an image at an interme-
diate layer of the 2D-CNN. The reading attention mecha-
nism guides the heads to select a linear combination of hy-
potheses, with higher attention assigned to memory slots
with content more similar to the feature maps. To further
compress the hypotheses in the augmented memory while
maintaining rich representations, we use multi-head read-
ing attention to interact with the memory bank. The num-
ber of plausible feature maps increases exponentially with
the number of reading heads and hypotheses, enabling a di-
verse representation space. The latter part of the 2D-CNN
combines the constructed feature maps with the hypothe-
ses in the memory for classification. To ensure the memory
bank learns useful hypotheses for replay in later tasks, in
addition to a classification loss, we imposed a logistic loss,
commonly used in knowledge distillation [18], based on the
soft class distribution predicted from the constructed and
the extracted feature maps, respectively.

4.2. Feature Extraction and Classification
The 2D-CNN contains two nested functions: F (·) for

feature extraction, with parameters θF , consisting of the
first few convolution layers; and Pt(·) for classification,
with parameters θPt

at task t, consisting of the last few con-
volution layers. Since early convolution layers in 2D-CNNs
are highly transferable [51], θF is trained for object recogni-
tion using ImageNet [11] and then fixed over all tasks. The
parameters θPt

in Pt(·) depend on task t. After pre-training
on ImageNet, we fine-tune Pt(·) such that HAMN learns
new sets of hypotheses and decision boundaries incremen-
tally to classify new object classes.

Up to task t, HAMN has seen a total ofCt classes. Given
an image It shown during task t, we define the output tensor
Zt from the feature extraction step as Zt = F (It). Zt is of
size S×W×H for channels, width, and height respectively.
The output feature maps Zt can then be used to produce
a logit vector qt = Pt(Zt). The logit vector qt ∈ RCt

contains the activation values over all Ct seen classes and is
passed as input to the softmax function, which outputs the
predicted probability vector pt ∈ RCt over all Ct classes.

We used pt(c) and qt(c) to denote the predicted prob-
ability and logit value for class c respectively. We define
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Figure 2. Schematic illustration of the proposed hypotheses-driven Augmented Memory Network (HAMN) for online stream learn-
ing tasks. HAMN model consists of a 2D-CNN and an augmented memory containing a set of hypotheses. The feature extractor in the
2D-CNN acts as a controller and decides which hypotheses to retrieve from the memory based on a content-similarity addressing mecha-
nism. To further compress the memory and increase representation variety, multi-head reading attention is used. The re-constructed feature
maps from the augmented memory (dashed line box) can be used for classification loss Lnew

classi. To ensure these hypothesis-driven feature
maps are as discriminative as the output of the CNN feature extractor, a logit distillation loss Lnew

distill is used between the two. To avoid
catastrophic forgetting, we stored the memory indices of retrieved hypotheses along with the logits from previous tasks. During replay
(shaded area), we used the stored memory indices to re-construct feature maps for classification loss Lold

classi and stored logits for regular-
ization based on Lold

distill. Least used memory loss Lmem is imposed to prevent HAMN from over-writing the frequently used hypotheses
from previous tasks.

Lclassi(·) as the cross-entropy loss between pt and its cor-
responding ground truth class label yc:

Lclassi(pt, yc) = −
∑Ct

i=1 δ(i− yc) log(pt(i))

where δ(x) = 1 if x = 0 and δ(x) = 0 otherwise.

4.3. Augmented Memory
We define Mt as the contents of the N × M memory
bank at task t. There are N memory slots, each stor-
ing a hypothesis vector of dimension M . Thus, we have
Mt = [Mt(1),Mt(2), ...,Mt(i), ...,Mt(N)] where Mt(i)
is a hypothesis vector indexed by i.
Multi-head content-based reading attention: The feature
extractor F (·) serves as a controller and outputs the tensor
Zt as the reading key of image It. Based on the similar-
ity between Zt and each hypothesis in the memory Mt, a
content-based memory addressing mechanism draws a hy-
pothesis from Mt. One could store the individual Zt of
each image It as a hypothesis in the memory bank and re-
play each hypothesis to prevent catastrophic forgetting, but
this requires extensive memory resources. To further com-
press and remove redundancies in Zt, we used a multi-head
reading attention mechanism. For each image, the feature
tensor Zt of size S ×W × H is split into groups, each of
which interacts with the shared Mt. We partition Zt along

the S channels into D groups with each group d of size
S/D×W ×H . A hypothesis should represent a local con-
cept and be location-invariant. Thus, Zt consists of multiple
reading keys zt,d,l indexed by group d and spatial location l
on Zt and l ∈ {1, 2, ..., L =W ×H}:
Zt = {zt,1,1, ..., zt,d,l, ..., zt,D,L}, zt,d,l ∈ RS/D (1)

For content-based addressing, each reading head compares
its reading key zt,d,l with each hypothesis Mt(i) ∈ RS/D
by a similarity measure K[·, ·]. To discourage attention
blurring over all hypotheses, each reading head bundles
with a hyperparameter of a positive constant value β. β de-
notes the attention sharpening strength and it can amplify or
attenuate the precision of hypothesis selection. This mech-
anism produces a reading attention vector wt,d,l over N lo-
cations based on the content similarity, defined as the inner
product K[u, v] = 〈u, v〉.

wt,d,l(i) =
eβK[zt,d,l,Mt(i)]∑
j e
βK[zt,d,l,Mt(j)]

(2)

The overall reading attention wt for all reading heads can
then be written as wt = {wt,1,1, ..., wt,d,l, ..., wt,D,L}.
Construction from multiple hypotheses: The retrieved
content vector rt,d,l for its reading key zt,d,l, of size M , is
computed as the expectation of sampled hypotheses modu-
lated by the reading attention vector wt,d,l:
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rt,d,l =
∑
i

wt,d,l(i)Mt(i) (3)

We define the final feature tensor Z̃t, from a set of hy-
potheses in the memory bank Mt, as the content retrieved
using each reading key Z̃t = {rt,1,1, ..., rt,d,l, ..., rt,D,L}.
To enforce that the hypothesis-driven tensor Z̃t has discrim-
inative representations as Zt, we perform classification on
Z̃t using the classifier Pt(·) attached with softmax. In addi-
tion, we introduce the distillation loss Ldistill on the logits
qt and q̃t of Zt and Z̃t respectively:

Ldistill(qt, q̃t) =

Ct∑
i=1

qt(i) log(q̃t(i))

+(1− qt(i)) log(1− q̃t(i))

(4)

Note that although HAMN makes class predictions based
on both Z̃t and Zt, we use the predictions from Z̃t as the
final predicted result during testing.

4.4. Avoiding catastrophic forgetting

In the incremental class setting (see Protocols), HAMN
is presented with images It from new classes cnew in
task t where cnew belongs to the complement set of
{1, ..., cold, ..., Ct−1} in {1, ..., cold, ..., cnew, ..., Ct}. We
take three measures below to avoid catastrophic forgetting.

Rarely-used memory locations: Every component in
HAMN is differentiable, enabling hypothesis learning via
gradient descent. For each new image It in task t, HAMN
learns a new set of hypotheses in Mt. The update of hy-
potheses could undesirably occur in recently-used memory
locations from previous tasks. To emphasize accurate en-
coding of new hypotheses and preserve the old hypothe-
ses in most-used memory locations learnt from the previous
task t − 1, we keep track of the top k most-used memory
locations for each reading attention vector and aggregate
those locations over all reading heads:

At−1 =
⋃
It−1

⋃
D

⋃
L

m(wt−1,d,l, k) (5)

where m(·) returns the top k indices with largest attention
values in wt−1,d,l. Thus, we can define the memory usage
loss Lmem = δ(At−1)(Mt−1 −Mt)

2. An indicator func-
tion δ(·) returns a binary vector of size N where the vector
element at index i is 1 if i ∈ At−1 and 0 otherwise.

Hypothesis replay: Replay using memory indexing is
more efficient in preventing catastrophic forgetting than us-
ing pixels [16]. We store the reading attention wt−1 from
the previous task t − 1 and re-construct the feature tensor
Z̃t−1 from Mt, which is replayed in the current task t. To
further compress memory usage, we store the index with the
largest attention value in wt−1,d,l for each reading head:

Algorithm 1 HAMN at task t
Input: stored X = 200 or X = 2000 logit vectors qst−1, correspond-
ing top-1 attention index tensors ws

t−1 and their class labels, a binary
vector δ(At−1) of dim N tracking the mostly used memory locations
over previous tasks, new training images It from new classes
Training:
for batch in training images do

Train with It based on Ldistill & Lclassi on Zt & Z̃t

if t > 1 then
Randomly sample x out of X and replay:
Re-construct hypothesis-driven Z̃s

t−1 using ws
t−1

Train Pt(·) based on Ldistill using qst−1 and Lclassi

Regularize Mt using Lmem on δ(At−1)
end if

end for
Testing:
for batch in testing images do

Compute pt using Pt(Mt(F (·))) on test image based on Z̃t

end for
wst−1 = {m(wt−1,1,1, 1), ...,

m(wt−1,d,l, 1), ...,m(wt−1,D,L, 1)}
(6)

We can approximate wt−1 with a one-hot vector gener-
ated using δ(wst−1) and construct Z̃st−1 usingMt for replay.
Storing only the top-1 index in each reading head greatly re-
duces its memory usage fromN×D×W×H toD×W×H .

Distillation across tasks: Similar to the work [38], we use
a distillation loss to transfer knowledge from the same neu-
ral network between different tasks to ensure that the dis-
criminative information learnt previously is not lost in the
new task t. Thus, given the constructed feature tensor Z̃st−1

and its stored logits vector qst−1, we compute its distillation
loss Ldistill(qst−1, Pt(Z̃

s
t−1)) using Eq. 4.

Sampling strategy for replays: Some algorithms select
representative image examples to store and replay based
on different scoring functions [6, 9, 23]. However, random
sampling uniformly across classes yields outstanding per-
formance in continual learning tasks [49]. Hence, we adopt
a random sampling strategy and store X logits and top-1
reading attention tensor pairs (qst−1, w

s
t−1) corresponding

to images Ioldt−1 from old classes cold of previous tasks. De-
pending on the number of seen Ct−1 classes, the storage
for each old class contains X/Ct−1 pairs. To prevent catas-
trophic forgetting, we define the total loss:

Ltotal = γLmem + α
∑
Ioldt−1

(Lclassi(p
old
t , yoldc )

+Ldistill(q
s
t−1, Pt(Z̃

s
t−1)))

+
∑
Inew
t

(Lclassi(p
new
t , ynewc ) + Ldistill(qt, q̃t))

(7)

where α and γ are regularization hyperparameters.

4.5. Implementation and training details
We used the SqueezeNet [19] architecture as the back-

bone. Following PyTorch [36] conventions for SqueezeNet,
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the feature extractor F (·), as the controller, includes convo-
lution blocks up to layer 12 of SqueezeNet and the classi-
fication network Pt(·) includes the remaining layers. The
tensor Zt after layer 12 is of size S = 512 × (W =
13) × (H = 13). We split Zt along the S axis into
D = 512/M groups, resulting in 13× 13× (512/M) read-
ing keys of length M . Depending on the number of tasks to
learn in each dataset, we defined N = 100, 100, 1000, 1000
and M = 8, 8, 128, 128 respectively for CORe50, iLab,
Toybox, and CIFAR100. We initialized the memory bank
randomly before training. We tried initializing the memory
bank with normalized k-means clustered centers trained on
CIFAR100 [24] but there were no improvements. In video
datasets, given that each reading head has 100 hypotheses to
read from, HAMN could construct 10013×13×(512/M) fea-
ture maps, creating a rich latent space. We chose k = 1,
taking the top-1 attention index in each reading head, to
compute the aggregated attention vector At−1 for regular-
izing memory using Lmem. HAMN stores X = 200 old
samples for CORe50, iLab, and Toybox, and X = 2000 for
CIFAR100, which has a higher number of classes. Empiri-
cally, we set the following hyperparameter values: β = 5,
γ = 1000, α = 5. Pseudocode is shown in Algorithm 1.

5. Experimental Details
5.1. Baselines

We compared HAMN with continual learning methods in
several categories. To control for the effect of network ar-
chitecture on performance, we used SqueezeNet [19] pre-
trained on ImageNet [11] as the backbone for the majority
of the stream learning algorithms that we used as baselines,
except in cases where algorithm designs caused the sub-
stitution of SqueezeNet to require extensive modifications.
Unlike the other methods, HAMN introduces an augmented
memory bank between intermediate layers of SqueezeNet.
Due to the additional, randomly-initialized parameters in-
troduced by the augmented memory, we trained HAMN for
multiple epochs on only the first task to allow HAMN to
achieve similar performance to other methods on the first
task, enabling a fair comparison on subsequent tasks.
Parameter Regularization Methods: We compared
against Elastic Weight Consolidation (EWC) [22], Synaptic
Intelligence (SI) [52], Memory Aware Synapses (MAS) [1],
Learning without Forgetting (LwF) [26], Stable SGD [34],
and naive L2 regularization (L2) where the L2 distance in-
dicating parameter changes between tasks is added to the
loss [22]. Due to varying source code availability, some
algorithms were re-adapted for online stream learning.
Memory Distillation and Replay Methods: We compared
against Gradient Episodic Memory (GEM) [31] , Averaged
GEM (AGEM) [8], Incremental Classifier and Representa-
tion Learner (iCARL) [38], Bias Correction method (BIC)
[50], Gradient sample selection (GSS) [2], Continual Pro-

totype Evolution (CoPE) [10], Adaptive Aggregation Net-
work (AAN) [28], REMIND (REM) [16], and Rainbow
Memory (RM) [4].
Lower bound is trained sequentially over all tasks without
any measures to avoid catastrophic forgetting.
Upper bound is trained on shuffled images from both the
current task and all previous tasks over multiple epochs.
Chance predicts class labels by randomly choosing 1 out of
the total of Ct classes up to current task t.

We report Top-1 classification accuracy on the current
task for all seen Ct classes after 10 runs per protocol. See
average top-1 accuracy over all tasks in Supp. material.

5.2. Memory Footprint Comparison

SqueezeNet has J ≈ 1.2 × 106 parameters. Weight reg-
ularization methods other than LwF and StableSGD have
to store importance values for J parameters for each task,
causing memory requirements to grow linearly with the
number of tasks. In more challenging classification tasks,
the network size and memory usage tend to increase. To
provide a fair comparison with the weight regularization
methods, we allocated a comparable amount of memory to
the replay methods for storing examples to replay in subse-
quent tasks. Since image replay methods require storing at
least one image from each previous class, we store 15 im-
ages for all classes for all raw pixel replay methods over all
3 video stream datasets and 100 images for CIFAR100.

To illustrate memory usage, consider CORe50 in the
class instance protocol. Weight regularization methods re-
quire memory of size 5J , i.e., about 6 million parameters
for the 5 tasks. The dimension of the logit vector changes
over tasks (i.e., 2, 4, etc.). For simplicity, we treat any
HAMN logit vector qst−1 of constant dimension 10 for all
classes in the 5 tasks. The top-1 attention index tensor wst−1

is of constant size D ×W ×H = 10, 816 parameters. We
store X = 200 old pairs of logit and attention indices, re-
sulting in 2 million parameters - equivalent to storing ≈ 13
images of size 3×224×224 - which is 2 images fewer than
raw pixel replay methods. In CIFAR100, our memory usage
is even more dramatically reduced to 9 times smaller than
the replay methods. Compared with parameter regulariza-
tion methods, HAMN uses only one third as much memory
in CORe50 and 11 times less memory in CIFAR100.

6. Results and Discussion
6.1. Online Stream Learning Performance

An ideal online stream learning method should avoid catas-
trophic forgetting while adapting to new tasks. A trivial
algorithm that learns the first task and stops learning there-
after could have perfect memory for Task 1, but fail to clas-
sify new objects in subsequent tasks. Fig. S2 shows the re-
sults of continual learning methods on the CORe50 dataset
over 5 tasks across two stream learning protocols (See Supp.
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Figure 3. Top-1 classification accuracy over all tasks in class iid and in-
stance stream learning protocols on CORe50. See Protocols for experimen-
tal protocols and datasets, Baselines for baselines, and Supp. material for re-
sults on Toybox and iLab. HAMN is the bolded black line. Error bars denote
root mean squared error (RMSE) over 10 runs.

Accuracy (%) class iid instance
HAMN (SqueezeNet) 36.8 ± 2 29.6 ± 2
HAMN (MobileNet) 49.9 ± 2 39.1 ± 3

NumMemSlot 27.7 ± 1 27.6 ± 4
NumIndexReplays 33.3 ± 2 33.9 ± 6
MemSparseness 35.8 ± 3 33.0 ± 5
DistillationLoss 36.8 ± 4 25.1 ± 3
MemUsageLoss 33.2 ± 5 26.8 ± 5

NoReplay 16.0 ± 1 17.2 ± 1
Replay with Herding 32.0 ± 1 28.2 ± 4

Table 1. Top-1 classification accuracy in the 5th
task for the ablated HAMN models after 5 runs on
CORe50 in the class iid and instance protocols. See
Sec 6.2 for each ablated method. ± value denotes root
mean squared error (RMSE).

material for results in individual tasks on the Toybox and
iLab datasets). We also report the averaged top-1 classifica-
tion accuracy over all learnt classes across all tasks on Toy-
box and iLab datasets in the summary Table 2. HAMN gen-
erally performed better than other continual learning meth-
ods on CORe50 (Fig. S2). From Table 2, HAMN outper-
forms next best method (L2) by 4.8% and 1.7% on aver-
age in class iid and instance scenarios, respectively, on iLab
(also see Supp. Fig S1c, S2c, and S3c). HAMN also sur-
passes the next best baseline (iCARL) with an improvement
of 6% and 3.2% on class iid and instance, respectively, on
the Toybox dataset (also see Supp. Fig S1b, S2b, and S3b).

Methods generally performed similarly on task 1 after
one epoch, with the upper bound performing slightly bet-
ter due to training on multiple epochs. As more tasks
are added, task 1 performance decreased due to forgetting
(Supp. Fig S5). For example, on task 5 of CoRE50, many
baseline methods were barely above chance and were com-
parable to the lower bound. The best baseline methods were
iCARL, L2, and REMIND. HAMN achieved the highest
accuracy overall (see also Supp. Fig S3a). HAMN con-
sistently outperformed the best previous method, iCARL,
across all tasks by 7% on average. Thus, given comparable
memory usage with iCARL, HAMN can re-use learnt hy-
potheses and transfer knowledge from previous tasks more
effectively. Similarly, the feature maps reconstructed from
learnt hypotheses used for replay carry discriminative in-
formation. REMIND heavily relies on a pre-computed and
fixed codebook for constructing the memory based on first
tasks. This hinders adaptability to new tasks. REMIND un-
derperformed when there is limited feature diversity with
only 2 classes in the first task in all 3 video datasets. Its per-
formance remained inferior even in the online CIFAR100
image dataset. Finally, HAMN was three-fold more effi-
cient in memory usage than parameter regularization meth-
ods. HAMN’s improvement in memory usage efficiency
was even more pronounced for CIFAR100 (Sec 5.2).

The class instance protocol is more challenging than
class iid, as shown by the performance differences of each
method between the two protocols (compare Fig. S2a and
Fig. S2b). Compared with its own performance in the class
iid setting, one reason HAMN is worse in the class instance
setting is overfitting of the learnt hypotheses to particular
tasks. One way to eliminate hypothesis overfitting is to de-
crease the hyperparameter controlling the attention strength
β, encouraging the network to use many hypotheses drawn
from different tasks simultaneously. In an ablation study
described below, we show the importance of controlling the
attention strength β in the two protocols.

Figure S4 provides visualizations of the predicted logit
vectors after hypothesis replays during the class instance
protocol. We randomly choose 50 logit vectors from each
class and plot them using t-sne [47]. In this example, Task
1 involves separating two classes: cups and scissors. As
expected, the representation of those two classes is quite
distinct, which leads to a high classification accuracy. In
Tasks 3 and 5, the plots show the representation of the added
classes. Remarkably, the two initial classes remain dis-
tinctly separated despite no training on those classes after
the first task. This shows that HAMN accommodates new
classes while maintaining the clustering of previous ones.
We also provide visualization of the learnt augmented mem-
ory (see Supp.Sec.S2), demonstrating that HAMN learns
meaningful and consistent object representations over tasks.

Moreover, we tested all models in the standard bench-
mark online-CIFAR100 dataset with 20 tasks. Table 2
shows that HAMN consistently outperforms other competi-
tive models and leads the second best model by a huge mar-
gin of 11.5% (see also Supp. Fig S1d, S2d, and S3d).

6.2. Ablation Study
We assessed the importance of design choices by eval-

uating ablated versions of the model from the predictions
based on Zt on CORe50 (Table S5). First, the multi-head
reading mechanism reduces memory usage by compressing
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HAMN
(ours)

EWC
[22]

GEM
[31]

AGEM
[8]

iCARL
[38]

L2
[22]

MAS
[1]

Naive
Rehs

SI
[52]

Stable
[34]

GSS
[2]

BIC
[50]

CoPE
[10]

LwF
[26]

REM
[16]

AAN
[28]

RM
[4]

Toybox dataset [48]
iid 56.1 39.4 39.2 40.6 50.1 44.1 41.7 39.2 39.2 34.1 35.5 32.0 42.9 44.9 39.5 37.3 33.3

inst. 53.7 39.4 38.8 37.1 50.5 43.6 42.0 38.9 38.9 35.3 35.1 32.5 41.9 45.3 39.5 31.1 31.6
iLab dataset [5]

iid 46.8 35.0 35.1 32.4 41.0 42.0 41.3 35.2 35.1 26.7 34.1 32.3 38.0 34.5 34.1 32.1 28.4
inst. 44.2 35.7 34.5 29.2 42.1 42.5 40.5 34.5 34.8 29.8 34.5 32.0 37.4 32.1 34.5 28.9 33.2

online CIFAR100 dataset [24]
iid 45.1 15.7 - 21.1 33.6 13.6 18.4 15.2 15.2 17.9 12.8 16.3 18.4 16.6 16.4 15.4 12.1

Table 2. Averaged Top-1 classification accuracy over all tasks in class iid and instance stream learning protocols on Toybox, iLab
datasets and online class incremental iid protocol on CIFAR100 dataset. See Sec. 3 for experiments and datasets, Sec. 5.1 for baselines,
and Supp. Fig S3 for individual plots over all datasets. The best and second best results are bolded.

Figure 4. Clusters of class embeddings learnt in task 1 re-
main separated in subsequent tasks after hypothesis replays.
We provide t-sne [47] plots of logit vectors from each class af-
ter hypothesis replays within a class instance training run on the
CORe50 dataset. Task 1 is a binary classification problem. Tasks
3 and 5 are 6-choose-1 and 10-choose-1 classification problems
respectively. Colors correspond with the object classes in the leg-
end. We use the shaded blobs to emphasize the clusters of cups
and scissors from the 1st task and their corresponding locations in
subsequent tasks.
feature maps into a minimal number of hypotheses needed
for reconstruction. Instead of using SqueezeNet as a back-
bone, we tested MobileNet v2 [40] with fewer channels
in the feature extractor. Compared with SqueezeNet (with
S = 512 channels in the feature maps), in MobileNet v2
layer 7, the feature maps are of size 96 × 14 × 14. A hy-
pothesis vector of dim. 8 would result in 12×14×14 read-
ing keys. Assuming a fixed memory size, the fewer reading
keys than SqueezeNet would reduce the reconstruction error
onto the original feature maps. As expected, we observed
stronger continual learning performance for MobileNet v2.

Second, we tested the importance of the number of mem-
ory slotsN by reducing it from 100 to 50. There was a drop
in accuracy on the final task of almost 10% (class iid) and
2% (class instance). This implies that we need a sufficient
number of hypotheses to discriminate between classes.

Third, we reduced the number of stored samples by half
(pairs of top-1 attention memory indices and their corre-
sponding logits) from X = 200 to X = 100. For class
iid, accuracy dropped by ≈ 5%, indicating that we need to
store multiple samples per class to represent class diversity.
Reducing X is not as harmful as reducing N , suggesting
that the hypotheses in the augmented memory are highly
discriminative and that there exist regularities among rep-
resentations within the same class that reduce the need to
store as many replay samples as in pixel-based replay. In
the class instance protocol, accuracy improved by 4% in the
class instance protocol, suggesting that models more easily

overfit in the class instance setting.
Fourth, in MemSparseness, we decreased the reading at-

tention strength β (Eq. 2) from 5 to 1. A higher β forces
the model to attend to fewer memory slots. Setting β to
1 produces a more blurred distribution over all hypotheses,
causing an accuracy drop of ≈ 1% in the class iid proto-
col. Surprisingly, the lower sparsity helped the model in the
class instance protocol. One conjecture is that HAMN more
easily overfits in the class instance protocol, so a blurred
hypothesis distribution could help alleviate the strong pref-
erence for a single hypothesis during predictions.

Fifth, distillation loss is important for knowledge trans-
fer between networks [18] and across sequential tasks [38].
We introduced two distillation losses in HAMN, during re-
play and training. There was no significant effect of remov-
ing the distillation loss for the class iid protocol. However,
accuracy dropped by 5% in the class instance protocol.

Sixth, in MemUsageLoss, we removed the least used
memory lossLmem, which was introduced to prevent useful
old hypotheses from being over-written. Removing Lmem
results in a 3% accuracy drop for both protocols, demon-
strating that preventing interference between old and new
hypotheses helps prevent catastrophic forgetting.

Seventh, we removed replay from the HAMN model
(NoReplay). As expected, Lmem alone is not sufficient to
avoid catastrophic forgetting. The large decrease in accu-
racy of 15-20% for both protocols emphasizes that replay is
essential and demonstrates that the learnt hypotheses cap-
ture representative information for old classes.

Lastly, rather than storing random samples in replay
buffers from previous tasks, we tested the herding sampling
strategy [38]. We did not observe any performance increase.
It is possible that herding only selects essential components
in object representations in each class and these representa-
tions are already present with the same minimal number of
memory indices in HAMN. In contrast, random sampling
might increase the chance of introducing more diversity to
object representations per object class.

7. Conclusions
We addressed the problem of online stream learning for
classification tasks and proposed a novel method of memory
index replay using hypotheses stored in augmented mem-
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ory. In addition to ameliorating catastrophic forgetting on
benchmark datasets, our method uses memory more effi-
ciently than other methods, while generalizing to novel con-
cepts even when trained only once on a continuous stream.

Despite the promising results of HAMN in online stream
learning, several future directions should be explored. First,
to test long-range online stream learning abilities, there is a
lack of large video datasets for object recognition with hun-
dreds of classes. Second, HAMN requires a feature extrac-
tor pre-trained on ImageNet, hindering its ability of general-
ization to other domains (e.g., X-ray scans). For continual
learning in new domains, one could first train the feature
extractor via unsupervised learning in the new domain, e.g.,
via generative adversarial networks [7], and then use it with
HAMN for online stream learning tasks in the new domain.
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S8. Appendix
List of supplementary figures

1. Top-1 classification accuracy in each task in the class
iid stream learning setting on the CORe50, Toybox,
iLab and CIFAR100 datasets, Fig S1

2. Top-1 classification accuracy in each task in the class
instance stream learning setting on the CORe50, Toy-
box and iLab datasets, Fig S2

3. Average top-1 classification accuracy over all tasks in
the class iid and class instance stream learning settings
on the CORe50, Toybox, iLab and CIFAR100 datasets,
Fig S3

4. Embedding clusters of classed learned by upper bound
over 5 tasks (a) and confusion matrix between actual
class labels and predicted class labels after the 5th task
in class instance setting on CORe50 dataset, Fig S4

5. Average top-1 classification accuracy on Task 1 over
all tasks in class iid and class instance stream learn-
ing settings on CORe50, Toybox, iLab and CIFAR100
datasets, Fig S5

6. Each hypothesis represents a concept and each learnt
concept remains approximately the same across tasks,
Fig S6

S9. Preventing catastrophic forgetting
A proficient stream learning method should not only

show good memory retention and avoid catastrophic for-
getting, but should also be able to adapt to new tasks. In
the main text, we described the average classification ac-
curacy over all previous tasks. To evaluate the ability to
prevent catastrophic forgetting, here we report the classifi-
cation accuracy only on the first task (first two classes seen
by the model) after each continual learning algorithm learns
a new task. If the algorithm completely forgets what has
been learnt in the first task and overfits to the current task
(i.e. current 2 new classes in CORe50, iLab, and Toybox, or
current 5 new classes in CIFAR100), the classification ac-
curacy would be 0% for the older classes. For example, on
CORe50, an algorithm with catastrophic forgetting would
achieve high accuracy (e.g. 95%) in the current task, and
0% accuracy on each previous task due to overfitting.

Conversely, if an algorithm learns the first task perfectly
(100%) but completely fails to learn additional new tasks,
the algorithm would achieve 100% accuracy on all images
in Task 1 after training on all subsequent tasks; but 0% of
accuracy on all images from other tasks.

Figure S5a shows the average classification accuracy on
the first two classes in Task 1 throughout all the tasks of

CORe50. Most of the algorithms have an average classifi-
cation accuracy of around 20% on Task 1 while our method
achieves 76.9% in class iid and 75.1% in class instance set-
tings. Although REMIND achieves the highest accuracy on
Task 1, the average classification accuracy over all tasks is
lower than that of our method across all four datasets. This
indicates that REMIND does not adapt to new tasks as well
as our method, possibly due to its reliance on a fixed, pre-
computed codebook for encoding and decoding memories.

Overall, after comparison with all baselines in terms of
both classification accuracy on all images from all tasks or
only from the first task, our HAMN model not only gen-
eralizes to learn new tasks, but also demonstrates excel-
lent memory retention capabilities. Similar conclusions can
be drawn from the Toybox, iLab, and CIFAR100 datasets
(Fig S3b, S3c, S3d). Our method achieves the highest aver-
age classification accuracy over all tasks on all four datasets
in both class iid and class instance settings.

S10. Memory Interpretation

To interpret what the learnt hypotheses in the augmented
memory represent, we provide a visualization of 2D proba-
bilistic hypothesis activation maps for three hypotheses on
an image from each class within a class instance training run
on CORe50 (Fig S6). The brighter regions denote locations
where the hypothesis of interest is more likely to get acti-
vated. We find consistent activation patterns over all classes.
For example, some hypotheses focus on object parts while
others focus on the background and hand features. We also
provide a side-by-side comparison of the hypotheses from
the same memory index between tasks 1 and 5. We do not
observe a change of hypothesis patterns with new tasks, im-
plying that the learnt hypotheses are not overwritten by new
ones thanks to the least used memory loss Lmem. This is
useful to avoid catastrophic forgetting and to assist transfer
learning on new tasks. We also verified the importance of
Lmem in the ablation study.

S11. Ablation Study using Z̃t

In the main paper, we assessed the importance
of design choices by evaluating ablated versions of
our model from the predictions based on Zt on
CORe50 (Table 1). In contrast, here we provide
the ablation results based on the predictions from Z̃t.
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Accuracy (%) class iid instance
HAMN (SqueezeNet) 45.0 ± 5 39.7 ± 6
HAMN (MobileNet) 59.6 ± 1 48.8 ± 3

NumMemSlot 46.7 ± 3 34.2 ± 2
NumIndexReplays 41.0 ± 4 34.5 ± 5
MemSparseness 47.2 ± 4 39.2 ± 3
DistillationLoss 50.6 ± 4 42.8 ± 5
MemUsageLoss 28.1 ± 3 30.2 ± 4

NoReplay 15.0 ± 1 15.4 ± 1
Replay with Herding 31.3 ± 3 33.7 ± 3

Table S3. Top-1 classification accuracy in the 5th task for the
ablated HAMN models after 10 runs on CORe50 in the class
iid and instance protocols. Only runs with accuracy above 80%
on the first task were used in the calculations. NumMemSlot class
instance required 20 initial runs to yield more than one run with
task 1 accuracy above 80%. See Sec 6.2 for each ablated method.
± values denote root mean squared error (RMSE).
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(c) iLab dataset
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Figure S1. Top-1 classification accuracy over all tasks in class iid stream learning settings on CORe50 (a), Toybox (b), iLab (c),
and CIFAR100 (d) datasets. Each color shows a different model (see main text for abbreviations and model definitions). The dashed
line denotes chance level. See main paper for experimental protocols and datasets as well as baselines. The error bars denote root mean
standard deviation (RMSD) over total 10 runs. Part a is the same as Fig.3a in the main text and is reproduced here for comparison purposes.
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Figure S2. Top-1 classification accuracy over all tasks in class instance stream learning settings on CORe50 (a), Toybox (b) and
iLab (c) datasets. The figure format and conventions follow Figure S1. Part a is the same as Fig.3b in the main text and is reproduced
here for comparison purposes.
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(b) Toybox dataset

 HAMN (ours)

EWC

GEM

AGEM

iCARL

L2

MAS

NaiveRehearsal

SI

Stable

GSS

BIC

CoPE

REMIND

LwF

Rainbow

AAN

lowerBound

upperBound

0

2
0

4
0

6
0

8
0

1
0

0

Avg Accuracy

C
la

s
s
-iid

C
la

s
s
-in

s
ta

n
c
e

C
h

a
n

c
e
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(d) CIFAR100 dataset

Figure S3. Average top-1 classification accuracy over all tasks in class iid (white) and instance stream learning (black) settings on
CORe50 (a), Toybox (b), iLab (c), and CIFAR100 (d) datasets. Dashed line is chance.
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(a) Visualization of embedding clusters of learnt classes (b) Confusion matrix

Figure S4. Embedding clusters of classes learned by upper bound over 5 tasks (a) and confusion matrix between actual class labels
and predicted class labels after the 5th task in class instance setting on CORe50 dataset. (a). t-sne plots of logit vectors from each
class. The first task (Task = 1) is a binary classification problem. The 3rd task is a 1-choose-6 classification problem. The 5th task is a
1-choose-10 classification problem. Colors correspond with the object classes in the legend. Note that the representation of the first two
classes (scissors and cups) remains distinct throughout the different tasks, showing that the model does not completely forget the initial
classes learnt during Task 1. (b). Confusion matrix after the 5th task. The sequence of actual labels (top to bottom) follows the class
presentation order across tasks, i.e. scissor and cup in 1st task, remote and can in the second task and so on. See the scale bar on the right
for probability values. See Fig 4 in the main paper to compare with our HAMN method.
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Figure S5. Average top-1 classification accuracy on Task 1 over all tasks in class iid (white) and instance (black) stream learning
settings on CORe50 (a), Toybox (b), iLab (c), and CIFAR100 (d) datasets.
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Figure S6. Each hypothesis represents a concept and each learnt concept remains the same across tasks. To visualize what activates
each hypothesis in the augmented memory, given any image It, we used its top-1 attention index tensor ws

t of size D×W×H , selected the
hypothesis index of interest, and computed its activation probability over all locations, resulting in a 2D probabilistic hypothesis activation
map. We overlaid this map onto the original image, with lower activation probabilities corresponding to higher opacity (darker regions).
The brighter regions denote locations where the selected hypotheses get activated with higher probability.
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