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Abstract

It is well understood that modern deep networks
are vulnerable to adversarial attacks. However,
conventional attack methods fail to produce ad-
versarial perturbations that are intelligible to hu-
mans, and they pose limited threats in the physical
world. To study feature-class associations in net-
works and better understand their vulnerability to
attacks in the real world, we develop feature-level
adversarial perturbations using deep image gen-
erators and a novel optimization objective. We
term these feature-fool attacks. We show that they
are versatile and use them to generate targeted
feature-level attacks at the ImageNet scale that
are simultaneously interpretable, universal to any
source image, and physically-realizable. These
attacks reveal spurious, semantically-describable
feature/class associations that can be exploited by
novel combinations of objects. We use them to
guide the design of “copy/paste” adversaries in
which one natural image is pasted into another to
cause a targeted misclassification.1

1. Introduction
State-of-the-art neural networks are vulnerable to adversar-
ial inputs, which cause the network to fail yet only differ
from benign inputs in subtle ways. Adversaries for visual
classifiers conventionally take the form of a small-norm
perturbation to a benign source image that causes misclas-
sification (Szegedy et al., 2013; Goodfellow et al., 2014).
These perturbations are effective attacks, but to a human,
they typically appear as random or mildly-textured noise. As
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such, analyzing these adversaries does not reveal informa-
tion about the network relevant to how it will function–and
how it may fail–when presented with human-interpretable
features. Another limitation is the extent to which con-
ventional adversaries work in the physical world. While
conventional attacks can retain some effectiveness when
photographed in a controlled setting (Kurakin et al., 2016),
they are less effective in uncontrolled ones (e.g., Kong et al.
(2020)) and cannot be created from natural objects.

Several works discussed in Section 2 have aimed to pro-
duce adversaries that are universal to any source image,
interpretable (i.e., appear comprehensible to a human), or
physically-realizable. But to the best of our knowledge, no
method exists to accomplish all three. To better understand
deep networks and what practical threats they face, we set
out to create adversaries meeting all of these desiderata.

Because pixel-space optimization produces non-
interpretable perturbations, a way to manipulate images at a
higher level of abstraction is needed. We take inspiration
from advancements in generative modeling (e.g., Brock
et al. (2018)) at the ImageNet scale. Instead of pixels, we
perturb the latent representations inside of a deep generator
to manipulate an image in feature-space. In doing so, we
produce adversarial features which are inserted into source
images either by modifying the latents that generate them
or by inserting a generated patch into natural images. We
combine this with a loss function that uses an external
discriminator and classifier to regularize the adversarial
feature into appearing interpretable.

We use this strategy to produce what we term feature-fool
attacks in which a high-level feature added to an image
causes a misclassification yet appears intelligible to a hu-
man without resembling the target class. Fig. 1 shows an
example in which a universal adversarial patch depicting
an owl is printed and physically placed near jeans to fool
a network into classifying the image as a loogerhead turtle.
We show that our universal attacks are more coherent and
better disguised than pixel-space ones while transferring to
the physical world. To further demonstrate their potential
for interpretable and physically-realizable attacks, we also
use these adversaries to design copy/paste attacks in which
one natural image is pasted into another to induce an un-
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Jean: 0.9772
Great Grey Owl: 0.0

Loggerhead: 0.0

Jean: 0.0
Great Grey Owl: 0.8076

Loggerhead: 0.0

Jean: 0.0009
Great Grey Owl: 0.0
Loggerhead: 0.9298

Figure 1. An example of an interpretable, universal, and physically realizable feature-fool attack against a ResNet50. The patch depicts an
owl, however, when printed, physically inserted into a scene with jeans, and photographed, it causes a misclassification as a loggerhead
turtle. The patch was created by perturbing the latent of a generator to manipulate the image in a feature-space and training with a loss
that jointly optimizes for fooling the classifier and resembling some non-target disguise class.

related misclassification. The following sections contain
background, methods, experiments, and discussion. Ap-
pendix A.7 has a jargon-free summary. Code is available at
https://github.com/thestephencasper/feature fool.

2. Related Work
Conventional adversaries (Szegedy et al., 2013; Goodfellow
et al., 2014) tend to be non-interpretable pixel-level pertur-
bations with limited ability to transfer to the physical world.
Here, we contextualize our approach with other work and
natural examples related to overcoming these challenges.

Inspiration from Nature: Mimicry is common in nature,
and sometimes, rather than holistically imitating another
species’ appearance, a mimic will only exhibit particular fea-
tures. For example, many animals use adversarial eyespots
to confuse predators (Stevens & Ruxton, 2014). Another
example is the mimic octopus which imitates the patterning,
but not the shape, of a banded sea snake. We show in Fig-
ure 2 using a photo of a mimic octopus from Norman et al.
(2001) that a ResNet50 classifies it as a sea snake.

Generative Modeling: In contrast to pixel-space attacks,
our method uses a generator to manipulate images in feature-
space. One similar approach has been to train a generator
or autoencoder to produce adversarial perturbations that
are subsequently applied to natural inputs. This has been
done by Hayes & Danezis (2018); Mopuri et al. (2018a;b);
Poursaeed et al. (2018); Xiao et al. (2018); Hashemi et al.
(2020); Wong & Kolter (2020) to synthesize attacks that are
transferable, universal, or efficient to produce. Unlike these,
however, we also explicitly focus on physical-realizability

and human-interpretability. Additionally, rather than train-
ing an adversary generator, ours and other related works
have skipped this step and simply trained adversarial latent
perturbations to pretrained models. Liu et al. (2018) did this
with a differentiable image renderer. Others (Song et al.,
2018; Joshi et al., 2019) have used deep generative networks,
and Wang et al. (2020) aimed to create more semantically-
understandable attacks by training an autoencoder with a
“disentangled” embedding space. However, these works fo-
cus on small classifiers trained on simple datasets (MNIST
(LeCun et al., 2010), SVHN (Netzer et al., 2011), CelebA
(Liu et al., 2015) and BDD (Yu et al., 2018)). In contrast, we
work at the ImageNet (Russakovsky et al., 2015) scale. Hu
et al. (2021) also do this, but only with adversarial patches,
while we use three types of attacks discussed in the follow-
ing section. Finally, compared to all of these works, ours
is also unique in that we regularize adversaries for inter-
pretability and disguise with our training objective rather
than relying on a generator alone.

Physically-Realizable Attacks: Our first contribution re-
lated to physical realizability is human-interpretable adver-
saries that fool a classifier when printed and photographed.
This directly relates to the work of Kurakin et al. (2016)
who found that conventional pixel-space adversaries could
do this to a limited extent in controlled settings. More re-
cently, Sharif et al. (2016); Brown et al. (2017); Eykholt
et al. (2018); Athalye et al. (2018); Liu et al. (2019); Kong
et al. (2020); Komkov & Petiushko (2021) used optimization
under transformation to create adversarial clothing, stickers,
patches, or objects. In contrast to each of these, we generate
attacks that are not only physically-realizable but also incon-
spicuous in the sense that they are both human-interpretable

https://github.com/thestephencasper/feature_fool


One Thing to Fool them All: Generating Interpretable, Universal, and Physically-Realizable Adversarial Features

ResNet50 Output:

Sea Snake, 0.573
Night Snake, 0.052
King Snake, 0.042
Hognose Snake, 0.027
Sidewinder, 0.025

(a) (b)

Figure 2. Adversarial features in nature. (a) A peacock and butterfly with adversarial eyespots (unfortunately, peacock and ringlet butterfly
are ImageNet classes, so one cannot meaningfully test how ImageNet networks might be misled by them). (b) A mimic octopus from
Norman et al. (2001) is classified as a sea snake by a ResNet50.

and disguised. Our second contribution related to physical
realizability is “copy-paste” attacks discussed next.

Interpretable Adversaries: In addition to fooling mod-
els, our adversaries provide a method for discovering
semantically-describable feature/class associations learned
by a network. This relates to work by Geirhos et al. (2018)
and Leclerc et al. (2021) who debug networks by searching
over features, transformations, and textural changes that
cause misclassification. More similar to our work are Carter
et al. (2019) and Mu & Andreas (2020) who develop in-
terpretations of networks using feature visualization (Olah
et al., 2017) and network dissection (Bau et al., 2017) re-
spectively. Both find cases in which their interpretations
suggest a “copy/paste” attack in which a natural image of
one object is pasted inside another to cause an unrelated
misclassification. We add to this work with a new method to
identify such adversarial features, and unlike either previous
approach, ours does so in a context-conditional fashion.

3. Methods
3.1. Threat Model

We adopt the “unrestricted” adversary paradigm of Song
et al. (2018), under which an attack is successful if the net-
work’s classification differs from that of an oracle (e.g., a
human). The adversary’s goal is to produce a feature that
causes a targeted misclassification, does not resemble the
target class to a human, is universally effective across a
distribution of source images, and is physically-realizable.
The adversary can only change a certain portion of either
the latent or the image depending on the type of attack we
use. We assume that the adversary has access to a differen-
tiable image generator, a corresponding discriminator, and
an auxiliary classifier. We use white-box access to the tar-
get network, though we present black-box attacks based on
transfer from an ensemble in Appendix A.2.

3.2. Training Process

Our attacks involve manipulating the latent representation
in a generator layer to produce an adversarial feature. Fig.
3 depicts our approach. We test three attacks, patch, region
and generalized patch (with a fourth in Appendix A.1). We
find that patch attacks are generally the most successful.

Patch: We use the generator to produce a square patch that
is inserted in a natural image.

Region: Starting with some generated image, we randomly
select a square portion of the latent representation in a layer
of the generator spanning the channel dimension but not the
height or width dimensions and replace it with a learned
insertion. This is analogous to a patch in the image’s pixel
representation. The modified latent is then passed through
the rest of the generator, producing the adversarial image.

Generalized Patch: These patches can be of any shape,
hence the name “generalized” patch. First, we generate a
region attack. Second, we extract a generalized patch from
it. We do this by (1) taking the absolute-valued pixel-level
difference between the original and adversarial image, (2)
applying a Gaussian filter for smoothing, and (3) creating a
binary mask from the top decile of these pixel differences.
We apply this mask to the generated image to isolate the
region that the perturbation altered. We can then treat this
as a patch and overlay it onto an image in any location.

Objective: For all attacks, we train a perturbation δ to the
latent of the generator to minimize a loss that optimizes for
both fooling the classifier and appearing as an interpretable,
inconspicuous feature:

argmin
δ

Ex∼X ,t∼T ,l∼L

[Lx-ent(C(A(x, δ, t, l)), ytarg) + Lreg(A(x, δ, t, l))]

with X a distribution over images (e.g., a dataset or genera-
tion distribution), T a distribution over transformations, L
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Figure 3. Our fully-differentiable pipeline for creating patch, region, and generalized patch attacks.

a distribution over insertion locations (this only applies for
patches and generalized patches), C the target classifier, A
an image-generating function, Lx-ent a targeted crossentropy
loss for fooling the classifier, ytarg the target class, and Lreg
a regularization loss for interpretability and disguise.

Lreg contains several terms. Our goal is to produce features
that are interpretable and disguised to a human, but absent
the ability to scalably or differentiably have a human in the
loop, we instead use Lreg as a proxy. Lreg includes three
terms calculated using a discriminator and an auxiliary clas-
sifier. For all attacks, we differentiably resize the patch
or the extracted generalized patch and pass it through the
discriminator and auxiliary classifier. We then add weighted
terms to the regularization loss based on (1) the discrimina-
tor’s (D) logistic loss for classifying the input as fake, (2)
the softmax entropy of a classifier’s (C ′) output, and (3) the
negative of the classifier’s crossentropy loss for classifying
the input as the attack’s target class. Thus, we have:

Lreg(a) = Llogistic[D(P (a))]

+H[C ′(P (a))]− Lx-ent[C
′(P (a), ytarg)]

Where P (a) returns the extracted and resized patch from
adversarial image a. In order, these terms encourage the
adversarial feature to (1) look real, and (2) look like some
specific class, but (3) not the target class of the attack. The
choice disguise class is left entirely to the training process.

4. Experiments
4.1. Attack Details

We use BigGAN generators from Brock et al. (2018); Wolf
(2018), and perturb the post-ReLU activations of the inter-
nal ‘GenBlocks’. Due to self-attention in the generator, for
region attacks, the change to the output image is not square
even though the perturbation to the latent is. By default, we
attacked a ResNet50 (He et al., 2016), restricting patch at-
tacks to 1/16 of the image and region and generalized patch
attacks to 1/8. We found that performing our crossentropy
and entropy regularization using adversarially-trained aux-
iliary classifiers produced subjectively more interpretable
results. This aligns with findings that adversarially-trained
networks tend to learn more interpretable representations
(Engstrom et al., 2019b; Salman et al., 2020) and better
approximate the human visual system (Dapello et al., 2020).
Thus, for crossentropy and entropy regularization, we used
an ε = 4 L2 and ε = 3 L∞ robust ResNet50s from En-
gstrom et al. (2019a). For discriminator regularization, we
use the BigGAN class-conditional discriminator with a uni-
form class vector input (as opposed to a one-hot vector).
For patch adversaries, we train under colorjitter, Gaussian
blur, Gaussian noise, random rotation, and random perspec-
tive transformations to simulate real world perception. For
region and generalized patch ones, we only use Gaussian
blurring and horizontal flipping. Also for region and gener-
alized patch adversaries, we promote subtlety by penalizing
the difference from the original image using the LPIPs per-
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Adv Ring Snake: 0.755
Img Beer Bottle: 0.9

Adv Macaw: 0.695
Img Stinkhorn: 0.999

Adv Ibizan Hound: 0.725
Img Yellow Slipper: 0.964

Adv Honeycomb: 0.615
Img Silky Terrier: 0.414

Adv Bouvier: 0.678
Img Padlock: 0.94

Src Husky: 0.009
Tgt Hair Slide: 0.966

Src Running Shoe: 0.060
Tgt Toaster: 0.936

Src Limousine: 0.060
Tgt Bow Tie: 0.904

Src Indigo Bunting: 0.001
Tgt Saltshaker: 0.998

Src Springer Spaniel: 0.033
Tgt Bernese Dog: 0.779

Adv Scorpion: 0.814
Img Skunk: 1.0

Adv Guenon: 0.847
Img Appenzeller: 0.034

Adv Hartebeest: 0.514
Img Triceratops: 0.062

Adv Bald Eagle: 0.841
Img Border Collie: 0.155

Adv Afr Elephant: 0.713
Img Guenon: 0.092

Figure 4. Adversarial features from universal patch (top), region (middle), and generalized patch (bottom) feature-fool attacks. Each
patch and generalized patch is labeled with its mean fooling confidence under random insertion in source images (labeled ‘Adv’) and the
confidence for the disguise class (labeled ‘Img’). Target and disguise confidences in each patch and generalized patch subfigure title come
from different inputs, so they can add to > 1. Region attacks are labeled with their source (‘Src’) and target (‘Tgt’) class confidences.

ceptual distance (Zhang et al., 2018; So & Durnopianov,
2019). Finally, for all adversaries, we apply a penalty on
the total variation of the patch or change induced on the im-
age to discourage high-frequency patterns. All experiments
were implemented with PyTorch (Paszke et al., 2019).

Figure 4 shows examples of universal feature-level patch
(top), region (middle), and generalized patch (bottom) at-
tacks. In particular, the patches on the top row are effective
at resembling a disguise distinct from the target class. How-
ever, when inserted as a patch into another image, the net-
work sees them as the target. To the extent that humans also
find these patches to resemble the target, this may suggest
similar properties in visual cortex. However, it is key to note
framing effects when analyzing these images: recognizing
target-class features unconditionally and given the class are
different tasks (Hullman & Diakopoulos, 2011).

4.2. Interpretable, Universal, Physically-Realizable
Attacks

To demonstrate that feature-fool adversaries are inter-
pretable and versatile, we generate adversarial patches

which appear as one object to a human, cause a targeted mis-
classification by the network as another, do so universally
regardless of the source image, and are physically-realizable.
We generated feature-fool patches using our approach and
compared them to five alternatives, four of which were
single-ablation tests in which no generator was used in favor
of optimization in pixel space and in which each of the three
regularization terms discussed in Section 3.2 were omitted.
In the final, we omitted the generator and all three of the
regularization terms, resulting in the same method as Brown
et al. (2017). For each test, all else was kept identical in-
cluding training under transformation and initializing the
patch as an output from the generator. This initialization
allowed for the pixel-space controls to be disguised and was
the same as the method for generating disguised pixel-space
patch attacks in Brown et al. (2017).

In Silico: Before testing in the physical world, we did so in
silico with 250 universal attacks of each type with random
target classes. Fig. 5 plots the results. On the x axis are
target class fooling confidences. On the y axis are the label-
ing confidences from an Inception-v3 (Szegedy et al., 2016)
which we use as a proxy for human interpretability. It was
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Figure 5. Feature-fool patch attacks compared to ablation tests.
Fooling conf. gives target class confidence. Disguise conf. shows
an Inception-v3’s label class confidence for the patch. Attacks
further up and right are better. Centroids are shown with error bars
giving the standard deviation.

not involved in regularization. For all tests, these universal
attacks have variable success for both fooling and disguise
due in large part to the random selection of target class
and random insertion of the patches. Centroids are shown
with standard deviations and suggest that our feature-fools
are equal or better at fooling and appearing interpretable
on average than all others except for the controls without
discriminator regularization which seem to trade fooling
confidence for disguise confidence.

Furthermore, see Appendix A.6 for examples of feature-
fool and Brown et al. controls which used optimization in
pixel space. Because they were initialized from generator
outputs, some of the Brown et al. controls have a veneer-like
resemblance to non-target class features. Nonetheless, they
contain higher-frequency patterns and less coherent objects
in comparison to ours.

In the Physical World: Next, we compared the physical
realizability of our attacks with a control method Brown
et al. (2017) which used optimization in pixel space. We
generated 100 additional adversarial patches for each, se-
lected the 10 with the best mean fooling confidence, printed
them, and photographed them next to 9 different ImageNet

classes of common household items.2 We confirmed that
photographs of each object with no patch were correctly
classified and analyzed the outputs of the classifier when
the adversarial patches were added in the physical scene.

Figure 6 shows successful examples of these physically-
realizable feature-fool and Brown et al. controls which used
optimization in pixel space. Meanwhile, resizable and print-
able versions of all 10 feature-fool and Brown et al. controls
which used optimization in pixel space are in Appendix A.6.
The mean and standard deviation of the fooling confidence
for the feature-fool attacks in the physical world were 0.312
and 0.318 respectively (n = 90) while for the Brown et al.
controls which used optimization in pixel space, they were
0.474 and 0.423 (n = 90). We do not attempt any hypothe-
sis tests due to nonindependence between the results across
classes due to the same set of patches being used for each.
These tests in the physical world show that the feature-fool
attacks were often effective but that there is high variability.
The comparisons to Brown et al. controls provide some
evidence that, unlike with our results in silico, the feature-
fool attacks may be less reliably successful in the real world
than the controls. Nonetheless, the overall level of fooling
success between both groups was comparable in these tests.

4.3. Interpretability and Copy/Paste Attacks

Using adversarial examples to better interpret networks
has been proposed by Dong et al. (2017) and Tomsett
et al. (2018). Unlike conventional adversaries, ours can
be used to understand how networks may respond to human-
comprehensible features. Here, our end goal is not to
produce a disguised attack but rather to identify spurious
feature-class associations, so we omit the regularization
terms from Section 3.2. We find that inspecting the resulting
adversaries suggests both useful and harmful feature-class
associations. In the Appendix, Fig. 10 provides a simple
example of each.

Copy/Paste Attacks: A copy-paste attack is created by
inserting one natural image into another to cause an unex-
pected misclassification. They are more restricted than the
attacks in Section 4.2 because the features pasted into an im-
age must be natural objects rather than ones whose synthesis
can be controlled. As a result, they are of high interest for
physically-realizable attacks because they suggest combi-
nations of real objects that yield unexpected classifications.
They also have precedent in the real world. For example,
feature insertions into pornographic images have been used
to evade NSFW content detectors (Yuan et al., 2019).

To develop copy/paste attacks, we select a source and tar-
get class, develop class-universal adversarial features, and

2Backpack, banana, bath towel, lemon, jeans, spatula, sun-
glasses, toilet tissue, and toaster.
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Backpack: 0.0537
Ibizan Hound: 0.8213

Banana: 0.0009
Schipperke: 0.9828

Jean: 0.0049
Puffer: 0.9893

Bath Towel: 0.0016
Loggerhead: 0.9606

Sunglasses: 0.0051
Macaw: 0.9831

Backpack: 0.4777
Wombat: 0.4674

Banana: 0.0
Hermit Crab: 0.9998

Jean: 0.0006
Acorn Squash: 0.9811

Bath Towel: 0.0036
Mousetrap: 0.995

Sunglasses: 0.038
Bell Pepper: 0.8919

Figure 6. Successful examples of universal, physically-realizable feature-fool attacks (top) and Brown et al. attacks (bottom). See
Appendix A.6 for full-sized versions of the patches.

manually analyze them for motifs that resemble natural ob-
jects. Then we paste images of these objects into natural
images and pass them through the classifier. Two other
works have previously developed copy/paste attacks, also
via interpretability tools: Carter et al. (2019) and Mu &
Andreas (2020). However, our technique has a unique ad-
vantage for producing germane fooling features. Rather than
simply producing features associated with the target class,
these adversaries generate fooling features conditional on
the distribution over source images (i.e. the source class)
with which the adversaries are trained. This allows any
source/target classes to be selected, but we find the clear-
est success in generating copy/paste attacks when they are
somewhat related (e.g., bee and fly).

Fig. 7 gives three examples. We show two example im-
ages for each of the patch, region, and generalized patch
adversaries. Below these are the copy/paste adversaries with
average target class confidence before and after feature in-
sertion for the 6 (out of 50) images for the source class in the
ImageNet validation set for which the insertion resulted in
the highest target confidence. Overall, little work has been
done on copy/paste adversaries, and thus far, methods have
always involved a human in the loop. This makes objective
comparisons difficult. However we provide examples of a
feature-visualization based method inspired by Carter et al.
(2019) in Appendix A.4 to compare with ours.

5. Discussion and Broader Impact
By using a generative model to synthesize adversarial fea-
tures, we contribute to a more practical understanding

of deep networks and their vulnerabilities. As an attack
method, our approach is versatile. Across experiments here
and in the Appendix, we show that it can be used to pro-
duce targeted, interpretable, disguised, universal, physically-
realizable, black-box, and copy/paste attacks at the Ima-
geNet level. To the best of our knowledge, we are the first
to introduce a method with all of these capabilities. As an
interpretability method, this approach is also effective as a
targeted means of searching for adversarially exploitable
feature-class associations.

Conventional adversaries reveal intriguing properties of the
learned representations in deep neural networks. However,
as a means of attacking real systems, they pose limited
threats outside of the digital domain (Kurakin et al., 2016).
Given feature-fool attacks, copy/paste attacks, and related
work, a focus on adversarial features and robust, physically-
realizable attacks will be key to understanding practical
threats. Importantly, even if a deep network is adversari-
ally trained to be robust to one class of perturbations, this
does not guarantee robustness to others that may be used to
attack it in deployment. Consequently, we argue for prag-
matic threat models, the use of more robust networks (e.g.,
Engstrom et al. (2019a); Dapello et al. (2020)), and exer-
cising caution with deep networks in the real world. As a
promising sign, we show in Appendix A.5 that adversarial
training is useful against feature-fool attacks.

A limitation is that when more constraints are applied to the
adversarial generation process (e.g., universality + physical-
realizability + disguise), attacks are generally less success-
ful, and more screening is required to find good ones. They
also take more time to generate which could be a bottle-
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Bee Fly
Traffic Light?

Orig Mean Conf: 0.2982
Adv Mean Conf: 0.8661

Indian Afr. Elephant
Blue Coloration?

Orig Mean Conf: 0.4368
Adv Mean Conf: 0.7263

Puffer Lionfish
Butterfly Wings?

Orig Mean Conf: 0.0195
Adv Mean Conf: 0.4645

Figure 7. Patch, region, and generalized patch adversaries being used to guide three class-universal copy/paste adversarial attacks. Patch
adversary example pairs are on the left, region adversaries in the middle, and generalized patch adversaries on the right of each odd row.
Six successful attack examples are on each even row.

neck for adversarial training. Further still, while we develop
disguised adversarial features, we find that they often have
somewhat unnatural, suspicious forms typical of generated
images. In this sense, our disguised attacks may nonetheless
be detectable by a human. Ultimately, this type of attack is
limited by the efficiency and quality of the generator.

Future work should leverage advances in generative mod-
eling. One possibly useful technique could be to develop
fooling features adversarially against a discriminator which
is trained specifically to recognize them from natural fea-
tures. We also believe that studying human responses to
feature-level adversaries and the links between interpretable

representations, robustness, and similarity to the primate
visual system (Dapello et al., 2020) are promising direc-
tions for better understanding both networks and biological
brains. Robustness against only certain aspects of attacks
(e.g., feature-based, universal, physical-realizabile) will not
be sufficient to develop broadly-reliable networks, so study-
ing attacks like ours which have many such properties seems
promising. Ultimately, given that each of the 11 proposals
for building safe, advanced AI outlined in Hubinger (2020)
directly call for interpretability tools and/or adversarial ro-
bustness, we argue that judiciously continuing this type of
work will be valuable for safe AI.
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Figure 8. Examples of original images (top) alongside class-universal channel adversaries (bottom). Each image is labeled with the source
and target class confidence.

A. Appendix
A.1. Channel Attacks

In contrast to the region attacks presented in the main pa-
per, we also experiment with channel attacks. For region
attacks, we optimize an insertion to the latent activations of
a generator’s layer which spans the channel dimension but
not the height and width. This is analogous to a patch attack
in pixel-space. For channel attacks, we optimize an inser-
tion which spans the height and width dimensions but only
involves a certain proportion of the channels. This is analo-
gous to an attack that only modifies the R, G, or B channel
of an image in pixel-space. Unlike the attacks in Section,
4.1, we found that it was difficult to create universal channel
attacks (single-image attacks, however, were very easy). In-
stead, we relaxed this goal and created class-universal ones
which are meant to cause any generated example from one
random source class to be misclassified as a target. We also
manipulate 1/4th of the latent instead of 1/8th as we do for
region attacks. Mean fooling rates and examples from the
top 5 attacks out of 16 are shown in Fig. 8. They induce tex-
tural changes somewhat like adversaries crafted by Geirhos
et al. (2018) and Bhattad et al. (2019)).

A.2. Black-Box Attacks

Adversaries are often created using first order optimization
on an input to a network which requires that the network’s
parameters are known. However, adversaries are often trans-
ferrable between models (Papernot et al., 2016), and one
method for developing black-box attacks is to train against a
different model and then transfer to the intended target. We
do this for our adversarial patches and generalized patches

by attacking a large ensemble of AlexNet (Krizhevsky et al.,
2012), VGG19 (Simonyan & Zisserman, 2014), Inception-
v3 (Szegedy et al., 2016), DenseNet121 (Huang et al., 2017),
ViT(Dosovitskiy et al., 2020; Melas, 2020), and two robust
ResNet50s (Engstrom et al., 2019a), and then transferring
to ResNet50 (He et al., 2016). Otherwise, these attacks
were identical to the ones in Section 4.1 including a random
source/target class and optimization for disguise. Many
were unsuccessful, but a sizable fraction were able to fool
the ResNet50 with a mean confidence of over 0.1 for ran-
domly sampled images. The top 5 out of 64 of these attacks
for patch and generalized patch adversaries are shown in
Fig. 9.

A.3. Discovering Feature-Class Associations

Fig. 10 shows two simple examples of using feature-fool
attacks to identify feature-class associations. It shows one
positive example in which the barbershop class is desirably
associated with barber-pole-stripe-like features and one neg-
ative example in which the bikini class is undesirably as-
sociated with caucasian-colored skin. Notably though, the
ability to identify feature-class associations such as this is
not a unique capability of feature-fool attacks and could also
be achieved with feature visualization (Olah et al., 2017).

A.4. Copy/Paste Attacks with Class Impressions

Mu & Andreas (2020) and Carter et al. (2019) both
used interpretability methods to guide the development of
copy/paste adversaries. Mu & Andreas (2020), used network
dissection (Bau et al., 2017) to develop interpretations of
neurons and fit a semantic description in compositional logic
over the network using weight magnitudes. This allowed
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Drake
Conf: 0.0838

Teddy
Conf: 0.1156

Polecat
Conf: 0.1334

Beagle
Conf: 0.145

Old English Sheepdog
Conf: 0.2529

Ladybug
Conf: 0.1736

Pinwheel
Conf: 0.1969

Marmoset
Conf: 0.2286

Macaque
Conf: 0.2483

Buckeye
Conf: 0.4332

Figure 9. Black-box adversarial patches (top) and generalized patches (bottom) created using transfer from an ensemble. Patches are
displayed alongside their target class and mean fooling confidence.

Target: Barbershop Target: Bikini

Figure 10. Examples of good and bad features class associations in which barber pole stripes are associated with a barbershop and
caucasian-colored skin is associated with a bikini. Patch (left), region (middle), and generalized patch adversaries (right) are shown.

them to identify cases in which the networks learned unde-
sirable feature-class associations. However, this approach
cannot be used to make a targeted search for copy/paste at-
tacks that will cause a given source class to be misclassified
as a given target.

More similar to our work is Carter et al. (2019) who found
inspiration for successful copy/paste adversaries by creating
a dataset of visual features and comparing the differences
between ones which the network assigned the source ver-
sus target label. We use inspiration from this approach to
create a baseline against which to compare our method of
designing copy/paste attacks in Section 4.3. Given a source
and target class such as a bee and a fly, we optimize a set
of inputs to a network for each class in order to maximize
the activation of the output node for that class. Mopuri
et al. (2018b) refers to these as class impressions. We train
these inputs under transformations and with a decorrelated
frequency-space parameterization of the input pixels using
the Lucent (Kiat, 2019) package. We do this for the same

three class pairs as in Fig. 7 and display 6 per class in Fig.
11. In each subfigure, the top row gives class impressions
of the source class, and the bottom gives them for the target.
Each class impression is labeled with the network’s confi-
dences for the source and target class. In analyzing these
images and comparing to the ones from Fig. 11, we find
no evidence of more blue coloration in the African elephant
class impressions than the Indian ones. However, we find it
plausible that some of the features in the fly class impression
may resemble traffic lights and that those for the Lionfish
may resemble an admiral Butterfly’s wings. Nonetheless,
these visualizations are certainly different in appearance
from our adversarial ones.

These class impressions seem comparable but nonredundant
with our adversarial method from Section 4.3. However,
our adversarial approach may have an advantage over the
use of class impressions in that it is equipped to design
features that look like the target class conditional on the rest
of the image being of the source class. Contrastingly, a class



One Thing to Fool them All: Generating Interpretable, Universal, and Physically-Realizable Adversarial Features

Bee: 1.0
Fly: 0.0

Bee: 0.993
Fly: 0.0

Bee: 0.982
Fly: 0.0

Bee: 0.973
Fly: 0.0

Bee: 0.958
Fly: 0.0

Bee: 0.954
Fly: 0.0

Bee: 0.0
Fly: 1.0

Bee: 0.0
Fly: 1.0

Bee: 0.0
Fly: 1.0

Bee: 0.0
Fly: 1.0

Bee: 0.0
Fly: 1.0

Bee: 0.0
Fly: 1.0

Indian: 1.0
African: 0.0

Indian: 1.0
African: 0.0

Indian: 1.0
African: 0.0

Indian: 0.999
African: 0.0

Indian: 0.999
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Indian: 0.993
African: 0.0
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Figure 11. Class impressions for three pairs of classes. These could be used for providing insight about copy/paste attacks in the same
way as the examples from Fig. 7. Each subfigure is labeled with the network’s output confidence for both classes.

impression is only meant to visualize features typical of the
target class. It is possible that this is why our adversarial
attacks were able to show that inserting a blue object into
an image of an Indian elephant can cause a misclassification
as an African elephant – two very similar classes – while

the class impressions for the two appear very similar and
suggest nothing of the sort.
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A.5. Defense via Adversarial Training

Adversarial training is a common and broadly effective
means for improving robustness. Here, to test how effective
it is for our attacks, for 5 pairs of similar classes, we gener-
ate datasets of 1024 images evenly split between each class
and images with/without adversarial perturbations. We do
this separately for channel, region, and patch adversaries
before treating the victim network as a binary classifier and
training on the examples. We report the post-training mi-
nus pre-training accuracies in Tbl. A.5 and find that across
the class pairs and attack methods, the adversarial training
improves binary classification accuracy by a mean of 42%.

Channel Region Patch Mean
Great White/Grey Whale 0.49 0.29 0.38 0.39
Alligator/Crocodile 0.13 0.29 0.60 0.34
Lion/Tiger 0.29 0.28 0.63 0.40
Frying Pan/Wok 0.32 0.39 0.68 0.47
Scuba Diver/Snorkel 0.42 0.36 0.69 0.49
Mean 0.33 0.32 0.60 0.42

Table 1. Binary classification accuracy improvements from adver-
sarial training for channel, region, and patch adversaries across 5
class pairs.

A.6. Resizable, Printable Patches

See Figs. 12 and 13 for feature-fool and control adversar-
ial images respectively. We encourage readers to experi-
ment with these images (which were optimized to fool a
ResNet50) or with their own which can be created using our
provided code. In doing so, one might find a mobile app to
be convenient. We used Photo Classifier.3

A.7. Jargon-Free Summary

AI and related fields are making rapid progress, but there
exists a communication gap between researchers and the
public which too-often serves as a barrier to the spread of
information outside the field. For readers who may not know
all of the field’s technical concepts and jargon, we provide a
more readable summary here.

Historically, it has proven difficult to write conventional
computer programs that accurately classify real-world im-
ages. But this task has seen revolutionary success by neural
networks which can now classify images into hundreds or
thousands of categories, sometimes with higher accuracy
than humans. Despite the impressive performance, we still
don’t fully understand the features that these networks use
to classify images, and we cannot be confident that they will
always do so correctly. In fact, past research has demon-
strated that it is usually very easy to take an image that the
network classifies correctly and perturb its pixel values by a

3https://apps.apple.com/us/app/photo-
classifier/id1296922017

tiny amount – often imperceptibly to a human – in such a
way that the network will misclassify it with high confidence
as whatever target class the attacker desires. For example,
we can take a cat, make minute changes in a few pixels, and
make the network believe that it is a dog. Researchers have
also discovered perturbations that can be added onto a wide
range of images to cause them to be misclassified, making
those perturbations “universal”. In general, this process
of designing an image that the network will misclassify is
called an “adversarial attack” on the network.

Unfortunately, conventional adversarial attacks tend to pro-
duce perturbations that are not interpretable. To a human,
they usually just appear as pixelated noise (when exagger-
ated to be visible). As a result, they do not help us to
understand how networks will process sensible inputs, and
they do not reveal weaknesses that could be exploited by ad-
versarial features in the real world. To make progress toward
solving these problems, we focus on developing adversarial
features that are interpretable (i.e., appear comprehensible
to a human). In one sense, this is not a new idea. Quite the
opposite, in fact – there are already examples in the animal
kingdom. Figure 2 shows examples of adversarial eyespots
on a peacock and butterfly and adversarial patterns on a
mimic octopus.

To generate interpretable adversarial features, we introduce
a method that uses “generative” modeling. In addition to
classifying images, networks can also be used to great ef-
fect for generating them. These networks are often trained
with the goal of producing images that are so realistic that
one cannot tell whether they came from the training set or
not, and modern generation methods are moving closer to
this goal. Typically, these networks take in a random input
and form it into an image. Inside this process are interme-
diate “latent” representations of the image at each “layer”
inside the generator that gradually shift from abstract, low-
dimensional representations of high-level features of the
image to the actual pixel values of the final image.

In order to create interpretable adversarial images, we take
images created by the generator and use them for adversarial
attacks. In the simplest possible procedure, one can generate
an image and then modify the generator’s representations
to change the generation of the image in such a way that
the classifier is fooled by it. We also found that optimizing
under transformations to our images (like blurring, crop-
ping, flipping, rotating, etc.) and adding in some additional
terms into our optimization objective to encourage more
interpretable and better-disguised images greatly improved
results. Ultimately, we produce adversarial images that dif-
fer from normal ones in higher-level, more intelligible ways
than conventional adversaries.

These adversaries are useful and informative in two main
ways. First, they allow us to create patches that are simulta-
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Target: Puffer Target: Bouvierdesflandres

Target: Snowleopard Target: Harp

Target: Macaw Target: Loggerhead

Target: Honeycomb Target: Ringnecksnake

Target: Schipperke Target: Ibizanhound

Figure 12. Printable examples of the disguised, transformation-robust, physically-realizable feature-fool adversarial patches from Section
4.2. Patches can be resized before printing.



One Thing to Fool them All: Generating Interpretable, Universal, and Physically-Realizable Adversarial Features

Target: Waterbottle Target: Acornsquash

Target: Lakelandterrier Target: Hermitcrab

Target: Baboon Target: Mousetrap

Target: Bucket Target: Chesapeakebayretriever

Target: Bellpepper Target: Wombat

Figure 13. Printable examples of transformation-robust, physically-realizable pixel-space adversarial patches from Section 4.2. Patches
can be resized before printing.
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neously “disguised”, “physically-realizable”, and “universal”
at the same time. By “disguised”, we mean that they look
like one thing to a human but cause an unrelated misclas-
sification. By “physically-realizable”, we mean that these
images can be printed and physically placed in a scene with
some other object, causing a photo of the scene to be mis-
classified. And by “universal”, we mean that these images
can cause photos of a wide range of objects to be misclas-
sified as the target class. As an example, Fig. 1 shows
a patch of an owl that can be physically inserted next to
any real world object (such as jeans) in order to cause a
misclassification as a loggerhead turtle.

Second, these adversaries allow us to interpret networks
by revealing feature-class associations they have learned.
We even find that this can be used to create an additional
type of attack. We show that this process can guide the
creation of “copy/paste” attacks in which one natural image
is pasted as a patch into another in order to cause a partic-
ular misclassification. Some of these are unexpected. For
example, in Fig. 7, we find that a traffic light can make a bee
look like a fly. These copy/paste attacks also have implica-
tions for physically-realizable attacks because they suggest
combinations of real objects that could yield unexpected
classifications.

Together, our findings offer potential for better understand-
ing network representations and better predicting the ways
that they may fail. We join others in the AI community in
calling for caution and adversarial robustness when deploy-
ing networks in the real world.

A.8. Epitaph

One thing to fool them all,
One class to assign them,
One thing to see it all,
And in the real world find them.4

4Adapted from J.R.R. Tolkein’s Ring Verse.


