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Hippocampal place cells form a map of the environment of an animal. Changes in the hippocampal map can be brought
about in a number of ways, including changes to the environment, task, internal state of the subject, and the passage of
time. These changes in the hippocampal map have been called remapping. In this study, we examine remapping during
repeated exposure to the same environment. Different animals can have different remapping responses to the same changes.
This variability across animals in remapping behavior is not well understood. In this work, we analyzed electrophysiological
recordings from the CA3 region of the hippocampus performed by Alme et al. (2014), in which five male rats were exposed
to 11 different environments, including a variety of repetitions of those environments. To compare the hippocampal maps
between two experiences, we computed average rate map correlation coefficients. We found changes in the hippocampal
maps between different sessions in the same environment. These changes consisted of partial remapping, a form of remap-
ping in which some place cells maintain their place fields, whereas other place cells remap their place fields. Each animal
exhibited partial remapping differently. We discovered that the heterogeneity in hippocampal representational changes across
animals is structured; individual animals had consistently different levels of partial remapping across a range of independent
comparisons. Our findings highlight that partial hippocampal remapping between repeated environments depends on animal-
specific factors.
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Significance Statement

Context identification is a difficult problem. Animals are not provided with objective context identity labels, so they must
infer which experiences come from which contexts. Different animals may have different strategies for performing this infer-
ence. We find that different animals have stereotypically different extents of partial hippocampal remapping, a neural corre-
late of subjective assessment of context identity.

Remapping can be triggered by a variety of changes, including
changes to the environment, such as minor cue changes (Muller
and Kubie, 1987; Sanders et al., 2019) or moving to a different
room (Leutgeb et al., 2005), changes in task (Markus et al., 1995),
changes in the internal state of the subject (Frank et al.,, 2000;
Wood et al., 2000), and the passage of time (Mankin et al., 2012).
On its simplest level, remapping enables place cell firing patterns
to be unique for each context, thus providing a potential mecha-
nism for encoding novel experiences and enabling context-de-
pendent learning (Colgin et al., 2008). Remapping takes a variety

Introduction

Place cells are hippocampal neurons that fire at specific locations
in an environment (O’Keefe and Dostrovsky, 1971), leading the
place cell population to collectively form a map of the environ-
ment (O’Keefe, 1976). When aspects of the the experience of an
animal change, the firing patterns of place cells change unpre-
dictably, leading to a new map across the population (Muller and
Kubie, 1987). This phenomenon is referred to as remapping.
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of forms, including global remapping, rate remapping, and par-
tial remapping. In particular, partial remapping is a commonly
observed phenomenon, which involves some fraction of the
place cell population remapping its place fields while other place
fields stay constant (Muller and Kubie, 1987; Shapiro et al., 1997;
Wood et al.,, 2000; Hargreaves et al., 2007; Kinsky et al., 2018;
Fetterhoff et al., 2021). Partial remapping is thought to reflect the
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representation of multiple hypotheses about context identity
(Jackson and Redish, 2007; Fenton et al., 2010; Sanders et al.,
2020).

The context-identification problem is not as simple as it
might seem. Animals don’t have direct access to objective con-
text labels but instead must infer context identity. Characterizing
remapping as hidden state inference (Sanders et al., 2020) cap-
tures many of the ways in which remapping does not follow the
formula of one room equals one map (Lever et al., 2002; Markus
et al.,, 1995; Law et al., 2016). One particular implication of the
lack of access of an animal to objective context labels is that dif-
ferent animals may infer context identity differently when pre-
sented with the same experiences. Variability among inference of
context identity between animals would be most easily observ-
able in ambiguous situations, such as those that elicit partial
remapping. This difference between animals has been
observed previously in studies focusing on other aspects of
remapping (Lever et al., 2002; Wills et al., 2005) and is conse-
quently widely recognized by experimenters but has not been
quantified or directly investigated.

Lack of access of an animal to objective context labels could
result in animal-to-animal variability in remapping behavior, as
different animals take different approaches to an ambiguous
problem. Previous work had shown that factors such as age could
cause changes in remapping (Barnes et al, 1997; Lister and
Barnes, 2009) and even that variation in remapping among aged
animals correlated with other firing phenomena (Hok et al,
2012) or with learning capacity (Wilson et al., 2003). However,
previous work did not investigate the variability in remapping
behavior across animals during normal cognitive function.

In this study, we reanalyzed electrophysiological data from
Alme et al. (2014) in which rats were exposed to 11 different
rooms over 28 sessions. To measure the extent of remapping, we
calculated average rate map correlations (RMCs). We verified
that RMCs are higher for same-environment comparisons than
for different-environment comparisons. For same-environment
comparisons, all animals exhibited partial remapping. However,
there was substantial variability in remapping behavior for same-
environment comparisons. We found that variability across
animals was consistent for a variety of independent same-
environment comparisons, pointing to consistent individ-
ual differences in remapping response. We demonstrate
that these individual differences in remapping behavior
across animals persist when controlling for several different
behavioral parameters and differences in cell yield in the
recordings for different animals. Overall, we provide evi-
dence for the hypothesis that individual animals have con-
sistently different partial remapping responses to the same
set of experiences.

Materials and Methods

The data for this study was collected by Alme et al. (2014), and permis-
sion was granted to us to conduct the analyses described below. Detailed
descriptions of the animals, surgery, electrode preparation, and implan-
tation can be found in the original publication (Alme et al., 2014). All
analysis code can be found at https://github.com/ParsaNilchian/animal-
variability.

Experimental design and statistical analyses

All animals were male. The number of cells recorded from each animal
is shown in Table 1. We analyzed the data with Python using the
NumPy (Harris et al., 2020) and SciPy (Virtanen et al., 2020) libraries.
Plots were developed with Matplotlib (Hunter, 2007). The preprocessing
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Table 1. Number of place cells recorded from each animal and the color codes
of the animals used in the figures in this article

Animal ID Number of place cells Color code
18024 25 red

17769 35 purple
19251 38 orange
178% 66 blue
18237 66 green

steps were based on Alme et al. (2014). The analysis was not
preregistered.

Behavioral procedures

Seven male Long-Evans rats, ages 4-5 months at implantation, foraged
for food in one familiar (F) and 10 novel (N) environments over a two-
day period. Ten of the 11 boxes had dimensions of 100 x 100 x 50 cm,
and one box was 100 x 100 x 80cm. A white cue card was placed on
the North wall of each box, but its size and position varied across rooms.
Each animal was tested over a period of two days with 8 h recording ses-
sions on each day. Electrophysiological recordings in each novel room
lasted 30 min (two sessions of 15 min each), followed by 15 min rest
blocks (Fig. 1A, schedule of recording day). The familiar room was tested
as the first and last session of each day and was preceded and succeeded
by a rest period. Five of the 10 novel rooms (N1-N5) were tested on the
first day, and the other five novel rooms (N6-N10) were tested on the
second day. The animal was recorded twice in each novel room with no
rest period in between. In five of the seven animals, N1 and N6, the first
novel rooms of day 1 and 2, were tested at the end of each day again.
The data of these five animals were used for this study because we were
interested in the repetitions of N1 and N6 in particular. One of the ani-
mals was only tested once in N1. The data of animal 17769 room F1 and
animal 19251 room N4 session 1 (N4) was missing.

Notation of sessions

The familiar room is denoted as F1 and F1* on day 1 and F2 and F2* on
day 2. For the familiar room the number following F indicates the day
and the asterisk (*) refers to the second session at the end of the day.
Novel rooms are described as N followed by the room number (e.g., N3
for novel room 3) and the immediate repetitions are marked with an ex-
clamation mark (}; e.g., N3!). The third and fourth repetitions of rooms
N1 and N6 at the end of days 1 and 2 are labeled with an asterisk and an
asterisk and an exclamation mark (*!; e.g., NI* and N1*!). In general, *
denotes sessions in the same room at a different time of the day, whereas
! denotes sessions that are immediately repeated.

Position data processing

The position data consisted of one-dimensional (1D) arrays of x- and y-
coordinates recorded with an approximate frequency of 25 Hz; x- and y-
positions were smoothed with a 1D Gaussian filter (sigma = 5 samples ~
200 ms).

Behavioral metrics

To quantify the behavior of the animals in each session, we used the
smoothed position data to calculate the mean, that is, (1) speed, (2)
acceleration, and (3) absolute angular velocity of each animal in each
session.

Speed. The change in x- and y-position (the difference between two
consecutive smoothed x- or y-positions, respectively) was divided by the
time difference between the two position coordinate recordings (~0.04 s).
Total speed was the square root of the sum of squares of the x- and y-
speed. The speed was then smoothed with a Gaussian filter (sigma = 7
time bins ~ 0.28 s). Hence, we obtained a 1D speed vector, with each
entry describing the speed of the animal between two consecutive position
recordings. This smoothed speed was used for all further analyses.

Acceleration. The x- and y-speed 1D vectors were used to calculate
the acceleration in x- and y-direction, respectively, across all animals and
sessions. To calculate the x-acceleration vector, we calculated the differ-
ence in two consecutive x-speed entries to obtain the change in speed in
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Figure 1.

Experimental design. A, Experimental protocol. Five male Long-Evans rats were exposed to 11 rooms over 2 d. In each room, the rats foraged for food in a 100 cm x 100 cm box.

Animals were pretrained in the F room but did not experience any of the 10 N rooms before testing. Exposure to each novel room was performed over two consecutive 15 min sessions. The
animal was not removed from the box between the first and second session. The F room and the first N room of each day, N1 and N6, were tested again at the end of the day. Each rest period
lasted 15 min. B, Pictures of the familiar and novel rooms. A mobile recording rig along with the red crane allowed continuous recording. The arrangement of the rooms along the hallway did

not follow a particular pattern. Adapted from Alme et al. (2014).

the x-direction. Subsequently, we divided the change in speed in the x-
direction by the amount of time that passes between the speed entries to
obtain a 1D x-acceleration vector. The 1D y-acceleration vector was cal-
culated according to the same steps using the y-speed vector. We then
calculated the total acceleration as the square root of the sum of the x-
acceleration and y-acceleration squared to obtain a 1D acceleration vec-
tor. The acceleration vector of the animals was smoothed with Gaussian
filters (sigma = 10 time bins ~ 0.4 s). Last, we computed the mean accel-
eration for all animals and sessions.

Absolute angular velocity. The mean absolute angular velocity for
each animal in each session was calculated using the smoothed position
data from the session. The change in x- and y-position was used to calcu-
late a 1D-vector describing the angle of the movement of the animal
between each of the position recording times. Subsequently, we calcu-
lated the difference between two consecutive angle entries to obtain a 1D
vector describing the angular change in the direction of the animal
across the session. The angular change in direction was divided by the
time that had passed between the two position entries to obtain a 1D
vector describing the angular velocity of the animal across the session.
Last, we converted each entry of the 1D angular velocity vector to its
absolute value and calculated the mean of the resulting absolute angular
velocity vector.

Rate maps

The 100 x 100 cm boxes were divided into 400 (20 x 20) 5 X 5cm bins.
We also performed our analyses with 30 x 30 bins, with substantively
similar results (data not shown). As is standard in the field, place fields
were only calculated using time points when the animal was moving at
least 5 cm/s to limit analyses to periods with engaged behavior. For each
cell and each spatial bin, the firing rate of that cell was computed as the
ratio of the number of spikes fired by that cell when the animal was in
that bin (spike count) divided by the total time spent in that bin (occu-
pancy). Both spike counts and occupancy in each bin were calculated
using only time points when the smoothed speed (see above, Behavioral
metrics for definition) was above 5cm/s (Fig. 2). Rate maps were then
smoothed with a 2D Gaussian filter (sigma = 1 bin = 5 cm). This value of
sigma was chosen to match the firing rates in Figures 3 and S2 in Alme
et al. (2014). Bins with no occupancy were replaced with a Gaussian fil-
tered average of surrounding bins with appropriate normalizations.
When comparing the place field locations and firing rates of our rate
maps to those of Alme et al. (2014), we noticed minor differences in the
maximum firing rates (commonly deviations of 1-2Hz), which may

have been related to differences in the speed filtering and smoothing of
the data. Overall, we were able to replicate the rate maps of the original
publication well (Fig. 3).

RMC

We calculated RMCs to quantify the amount of remapping between-ses-
sion pairs. We categorized the cells into three groups for a given session.
Cells either had no spikes (silent), <10 spikes (below threshold), or at
least 11 spikes (active) in a given session. We did not define the RMC if
the cell was below threshold or silent in both sessions. The RMC was
defined as zero if the cell was silent in one session and was active in the
other. If the cell was active in one session and either active or below
threshold in the other, we defined the RMC as follows: We turned the
smoothed rate map of each cell in each session into a 1D vector with 400
entries, each corresponding to one bin of the room. We then calculated
the Pearson correlation coefficient for each cell between this 1D vector
for the two sessions being compared. This correlation coefficient is the
RMC.

Average RMC

In addition to calculating the RMC of individual place cells across two
sessions, we also averaged across cells for a given session pair to obtain
the average RMC.

Population vector dot products (PVDPs)

For each session, the rate maps of each cell are stacked. For a particular
bin, the firing rate from the rate map of each cell at that bin forms a vec-
tor (length, number of cells) called the population vector. To compare
two sessions, we calculated the dot product of corresponding bins
between each session [excluding any NaN (invalid) values] and then
normalized by the number of cells. We then averaged these normalized
dot products across all bins to create an average population vector dot
product (PVDP) for that session-pair comparison. We compiled all the
session-pair comparisons into a matrix (size: #Sessions X #Sessions).
Finally, we scaled each row of the matrix to the maximum value in that
row so that all values would be in the range of 0-1.

Animal-to-animal variability

To quantify the animal-to-animal variability in remapping behavior, we
performed three general linear models (GLMs). We were interested in
identifying relationships among the remapping behavior for the repeti-
tions of the familiar room, the repetitions of N1 and N6 at the end of
each day, and the immediate repetitions of the N rooms. We correlated
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arrows). A Gaussian filter (sigma = 1 bin) was used to smooth the rate maps (gray arrow).

the following: (1) Mean N between-session versus Mean F
between-session RMCs, (2) Mean N1 between-session versus Mean
N6 between-session RMCs, and (3) Mean N within-session versus
Mean N between-session RMCs. Table 2 provides a detailed
description of the variables, the respective sessions used, and aver-
aging procedures for this analysis.

Behavioral controls

We used the mean speeds, accelerations, and absolute angular veloc-
ities of the animals as behavioral parameters to control the relation-
ship between the neural dependent and independent variables of
Figure 7C. The dependent variable in Figure 7C was the Mean N
within-session RMC for each animal, and the independent variable
was the mean N between-session RMC for each animal, both defined
in Table 2. To control the findings of Figure 7C, we reconstructed
the GLM six times, each time adding a behavioral control parameter
to the model as a second independent variable. A detailed descrip-
tion of the behavioral control variables can be found in Table 3.
Initially, we used mean differences in mean speeds, accelerations,
and absolute angular velocities (Table 3, method 1, top three rows).
Subsequently, we used speed means, acceleration means, and

Binned spike count

Binned position

-

Data processing pipeline. The box in each session was binned using 400 (20 x 20) 5 cm square bins. Using the
position data of each animal, we calculated the binned occupancy for each session in seconds (red arrows). Additionally,
we counted how many times each place cell spiked in each bin (black arrows). Top, The position data and the spiking data
were speed filtered (green line around the arrows). Periods during which the speed of the animal dropped below 5 cm/s were
excluded from the binned occupancy, and spikes during these periods were not counted. Binned spiking rates for each place
cell were calculated as the ratio of the number of spikes and the time spent in that bin in seconds (bottom, red and black
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absolute angular velocity means, as behav-
ioral independent variables (Table 3,
method 2, bottom three rows). The results
of these controls are reported in Table 4.

Results

We were interested in looking at the
changes in hippocampal maps between
experiences. In the experiment we ana-
lyzed (Alme et al., 2014), electrophysio-
logical recordings were taken from the
CA3 region of hippocampi of rats while
they foraged for food in 11 different
100 cm x 100 cm boxes over 2 d (Fig. 1;
see above, Materials and Methods).
0 According to the experimental proto-
col, some rooms were repeated imme-
diately (N1-N10), whereas others were
repeated at a later time during the same
day (F, N1, and N6) or during a differ-
ent day (F). This experiment allowed us
to compare repetitions of a variety of
different experiences, immediate repe-
titions of novel rooms, repetitions of
novel rooms later during the day, and rep-
etitions of the familiar room. This experi-
ment also allowed us to compare the
hippocampal representation between dis-
tinct experiences.

First, we had to quantify maps for
each experience. The processing pipeline
(Fig. 2) illustrates how we combined the
spiking data of the cells with the position
data of the animals to create rate maps
for each place cell across all sessions (see
above, Materials and Methods).

We observed multiple examples of
remapping (Fig. 3). We can use RMCs to
quantify remapping of individual cells
for a particular pair of sessions. High
RMCs indicate high similarity in the rate
maps of the cell across two sessions and
thus less remapping. Low RMCs indicate
low similarity in the maps and thus more
remapping. In some cases, place fields
were conserved but firing frequencies changed, resembling rate
remapping (Cell T0505 in sessions N1 and N1*, RMC = 0.69).
Global remapping occurred when the place field locations
changed across different sessions (T07C02 in animal 19251
between sessions N2 and N3, RMC = —0.14). However, not all
place cells remapped across all sessions. In many cases, firing fre-
quencies and place field locations were conserved (T09C06 in
animal 17894, sessions N3 and N3!, RMC = 0.82 or T07C02 in
animal 19251 between rooms N3 and N3!, RMC = 0.94).

We looked at the RMCs of individual cells across different
and repeated sessions to assess the remapping behavior across
the place cell population (Fig. 4). For this analysis, we grouped
all repeated session pairs together and all different session pairs
together. Because it is generally assumed that place cells globally
remap when animals move to new rooms, we expected a distri-
bution of RMCs clustered around zero for different room com-
parisons. This pattern was confirmed for all five animals,
indicating that most place cells do indeed globally remap across
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Figure 3.

different rooms in this experiment (Fig. 4). Interestingly, we
observed a tendency toward a tail of higher RMCs for the different
session comparisons. These relatively high RMCs may correspond
to some comparisons between different rooms having limited
remapping (clusters of high RMCs in Fig. 5). Given that all boxes
have the same shape and dimensions, these place cells could indi-
cate the similarity of the context to the animals despite the changing
rooms.

Based on the current understanding of remapping in our
field, one would expect only a small number of place cells to
remap across repeated sessions (Leutgeb et al., 2005; Colgin et
al., 2008), that is, RMCs centered around 0.8-1. Yet, RMCs were
relatively evenly distributed between zero and one (Fig. 4). These
findings support the notion that partial remapping occurs across
repeated sessions. Although some place cells remap (low RMCs),
potentially indicating a new context in the same environment,
other place cells do not remap (high RMCs), potentially coding
for the unchanging spatial information. Interestingly, of the cells
that remap in repeated sessions, a large number of cells lose their
place field entirely or gain a new place field (Fig. 4, lime green
bars). Clearly, however, RMCs are higher for repeated sessions
than for different sessions. We performed the KS test and con-
cluded that for each of the five animals, all repeated versus differ-
ent session comparisons were significant (p < 0.01).

To compare different session pairs to each other, we gener-
ated a single number that described similarity in hippocampal
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maps across the session pair by averaging the RMCs across the
population (Fig. 5). High average RMCs between two sessions
indicate greater similarity in the hippocampal maps of these ses-
sions and thus less remapping, whereas low average RMCs indi-
cate greater dissimilarity and more remapping. Therefore, we
expected to observe low average RMCs for comparisons of differ-
ent rooms and relatively high average RMCs for repetitions of
the familiar room (Fig. 5B; purple square near midline), immedi-
ate repetition of the novel rooms (Fig. 5B; turquoise squares one
off diagonal), and repetitions of N1 and N6 at the end of each
day (Fig. 5B; green four squares near midline). Although this pat-
tern was broadly confirmed (Fig. 5), we observed variability
among the five animals. Across four of the five animals, repeti-
tions of F had high average RMCs, yet the magnitude of the cor-
relation coefficients and thus the extent of partial remapping
varied across animals. Immediate repetitions of the novel rooms
showed consistently high average RMCs across all five animals.
Yet again the remapping pattern was distinct for each animal, as
indicated by the difference in the magnitude of the average
RMC:s across immediate repetitions of the novel rooms. Likewise,
repetitions of N1 and N6 at the end of each day resulted in rela-
tively high average RMCs in four of the five animals. Overall, the
comparisons between different rooms led to low average RMCs or
slightly negative average RMCs, indicating that global remapping
occurs between different rooms (Fig. 5; relatively white back-
ground). Indeed, RMCs of repeated rooms were significantly
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Table 2. Variables used in GLMs of Figure 7
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Table 3. Behavioral controls used for the GLMs of Figure 7¢

Variable Description Sessions Behavioral control Description Sessions
Mean F between session The repetitions of the familiar room at o F1/F1* Mean speed difference N Average difference in mean o [N1-N1*|
the end of days 1 and 2 e F1/R2 between session speeds for the sessions of N o [NT-N1#1|
o F1/F2* between session o [NTI-NT¥|
o F1*/F2 o [NTI-N1#|
o F1*/F2* o |N6-N6*|
o F2/F2* o |N6-N6*1|
Mean N1 between session  The repetitions of the novel room N1 at o NT/NT* o |N6!-N6¥|
the end of day 1 o N1/NT*! o |N6!-N6*1|
o N1I/NT* Mean acceleration difference N Average difference in mean o [NT-N1¥|
o NTI/N1*1 between session accelerations for the ses- o [N1-N1*I|
Mean N6 between session  The repetitions of the novel room N6 at o N6/N6* sions of N between session o [NTI-NT¥|
the end of day 2 ® N6/N6*! o [NTI-N1#|
o N6!/N6* o |N6-N6*|
o N6!I/N6*! o |N6-N6*1|
Mean N between session The repetitions of the rooms N1 and N6 o N1/NT* o |N6!-N6¥|
at the end of days 1 and 2, o N1/N1*! o |N6!-N6*1|
respectivel o N1I/NT* Mean absolute angular velocit Average difference in mean o |N1-NT¥
p y 9 y Y
o NTI/NT*! difference N between absolute angular velocities o [NT-N1*I|
o N6 / N6* session for the sessions of N o [N1I-N1¥|
o N6/N6*! between session o [NTI-N1#|
o N6!/N6* o |N6-N6*|
o N6!/N6*! o |N6-N6*I|
Mean N within session The immediate repetitions of the novel o N1/N1! o |N6!-N6¥|
rooms N1 to N10 o N2/N2! o |N6!-N6*1|
o N3/N3! Mean speed N between session Average of average speeds for o N1
o N4/N4! the sessions of N between o N1!
o N5/N5! session o N1¥
o N6/N6! o N1*!
o N7/N7! o N6
o N§/N8! o N6!
o N9/N9! o N6*
o N10/N10! o N6*!
Each row describes how we calculated the value of a variable used in Figure 7. The rows contain the name Mean acceleration N between Average of average accelera- o N1
of the variable in the left column, a verbal description of the session pairs used in the middle column, and session tions for the sessions of N o N1!
the actual list of session pairs in the right column. For a given variable, we calculated the RMC for each cell between session o N1*
for the session pairs listed in the right column. We averaged across all cells for each session pair. We then E
averaged across all session pairs for each animal. In this way, we arrive at a single value of each variable for ’
each animal. o N6
o N6!
o N6*
higher than RMCs of different rooms for four of the five animals o N6*!
(t test for unequal variances; 17894,p™" = 1.6 x 107, DoF Mean absolute anqular velocity Average of average mean o N1
(Degrees of Freedom) 352, t = 5.2; 18237, p*** =24 x 107>, DoF N between session absolute angular velocities o N1!
352, t = 4.9; 19251, p™* = 2.9 x 10”°, DoF 326, t = 5.0; 17769, p = for the sessions of N o N1
0.20, DoF 325, t = 1.2; 18024, p™** = 7.8 x 10™% DoF 352, t = 3). between session o NT%
The exact remapping pattern was, however, variable and unique o N6
. . o No!
for each animal, as reflected by the uniqueness of each of the mat- o N6
rices. For some animals, we observed clusters of relatively high av- o N6

erage RMCs for rooms that were tested close in time to each other
(Fig. 5A, Animals 17894 and 19251; light red boxes clustered to-
gether near diagonal). This may be an indication that less remap-
ping occurs between rooms that are tested closer to each other, yet
more data are needed to validate this claim.

To examine the variability in the partial remapping behavior
across animals for repetitions of the same room, we monitored
the distribution of average RMC:s for repetitions of F versus repe-
titions of N1 and N6 as described in Table 2 (Fig. 6). We
observed a very large range of average RMCs for both, repetitions
of the familiar room (range =~ 0-0.64) and repetitions of N1 and
N6 at the end of each day (range ~ 0-0.47). Overall, we found
that the mean RMCs for repetitions of F was higher than the
mean RMC for the repetitions of N1 and N6, meaning that less
remapping occurs in the familiar room. At the same time, we
observed more variability (indicated by a wider distribution) in
remapping behavior in the familiar room compared with the

Each row describes how we calculated the value of a control variable used in Figure 7C. The rows contain
the name of the variable in the left column, a verbal description of the variable in the middle column, and
the session pairs used in the right column. We controlled the relationship between the dependent and inde-
pendent variables displayed in Figure 7C by reconstructing the GLM with the addition of a behavioral vari-
able to the model. In total, we used six different behavioral controls derived from three behavioral
characteristics (speed, acceleration, and absolute angular velocity) and two different methodological
approaches (mean differences shown in top three rows and means displayed in bottom three rows). The top
three rows describe mean differences (method 1). For each animal, we calculated the average value of a be-
havioral variable (speed, acceleration, absolute angular velocity) for the sessions of interest. Subsequently,
we calculated the absolute difference between the mean values for the sessions of interest and averaged to
obtain a single value for a given animal. The bottom three rows (method 2) describe average behavioral pa-
rameters. For each animal, we calculated the mean of the behavioral parameter of interest for the listed ses-
sions. Subsequently, we averaged to obtain a single value describing the behavior of a given animal across
the listed sessions.

novel rooms N1 and N6. Both these findings were borderline sig-
nificant and varied depending on the arbitrary changes in the pa-
rameters of our data analysis pipeline (e.g., speed filtering and
smoothing). More data are needed to make definitive conclu-
sions about the remapping behavior of the animals in the
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RMCs across repeated and different sessions. Repeated sessions refer to repetitions of F, repetitions of each novel room, and repetitions of N1 and N6 at the end of each day.

Different sessions include comparisons across different rooms. T, Total number of observations (number of recorded cells times the number of sessions compared); |, inactive cells. Observations
where the cell was either below threshold in both sessions, silent in both sessions, or silent in one and below threshold in the other session, were excluded from the analysis. A, RMCs of indi-
vidual cells for each animal. In repeated sessions, RMCs of individual cells ranged from zero to one, indicating that partial remapping has occurred across the population of cells. This trend was
consistent across all five animals. In different sessions, RMCs were clustered around zero indicating that most cells remap. B, RMCs of individual cells across all animals. When pooling the data

of all five animals, the pattem described in A became more apparent.
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Figure 5.

Average RMCs across animals and sessions. This is the population version of Figure 4, illustrating the extent of remapping as a whole. 4, Average RMCs of each animal individually.

Overall, average RMCs were elevated for repetitions of the familiar room, immediate repetitions of the novel rooms, and repetitions of N1 and N6 at the end of each day. Comparisons between
different sessions generally showed low average RMCs around zero. However, we observed a remarkable amount of deviation from this pattern across animals. For some animals, the repetitions
of N1 and N6 at the end of each day displayed very low average RMCs (animals 17769 and 18024). Additionally, for animal 19251 some comparisons between different rooms revealed rela-
tively high average RMCs (rooms N6 and N8). These findings indicate that remapping behavior is variable across animals. B, Average RMCs across all animals. When averaging mean RMCs
across animals, the broad pattern described in A became more apparent. Although repetitions of novel rooms and the familiar room showed elevated average RMCs, comparisons between dif-
ferent rooms led to relatively low average RMCs. The repetitions of N1 and N6 at the end of each day are marked with green frames, whereas repetitions of the familiar room are marked with
a purple frame. Immediate repetitions of the novel rooms adjacent to the diagonal are marked with turquoise frames.

familiar versus the novel rooms. Interestingly, the relative order
of average RMCs across animals for repetitions of N rooms was
similar to the relative order of average RMCs for repetitions of
the F room, raising the question of whether there is a pattern in
the remapping behavior of the animals.

To examine the characteristics of partial remapping behavior
across the population of animals, we looked at the consistency of
RMCs across different repeated session comparisons in each

animal. We found that animals with a higher mean RMC for the
repetitions of F displayed higher RMCs for the repetitions of N1
and N6 at the end of each day (Fig. 74; ©* = 0.6, p = 0.08).
Likewise, animals with a higher mean RMCs for repetitions of
N1 showed higher RMCs for the repetitions of N6 (Fig. 7B; 1* =
0.72, p* = 0.04). Additionally, animals with a higher Mean N
within-session RMC, showed a higher Mean N between-session
RMC (Fig. 7C; * = 0.93, p™ = 0.005). Together, these findings
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Figure 6. Partial remapping differences between repetitions of familiar and novel rooms.
The mean RMC for repetitions of F was higher compared with the mean RMC for the repeti-
tions of N1 and N6 at the end of each day. Furthermore, we observed more variability for
RMCs describing repetitions of the familiar room relative to repetitions of N1 and N6 at the
end of each day. These findings were borderline significant and shifted slightly based on ar-
bitrary decisions concerning the speed filtering, smoothing, and thresholding of the rate
maps. We observed an animal-specific clustering of RMCs. For repetitions of F and repetitions
of N1/N6 there seems to be a large variability between animals, as shown by the wide range
of RMC distributions. However, the within-animal variability is much smaller, as the RMCs of
each animal occupy speific regions within the distribution. This phenomenon resulted in a
clustering of RMC for each animal so that the RMCs of the animals seemed to be ordered,
with animal 19251 displaying the highest and animal 17769 the lowest RMCs.

indicate that the partial remapping behavior across animals for
repeated rooms is structured and not random. Despite only five
available data points (for five animals) in these analyses, the cor-
relations described above were relatively high and stable across a
variety of values of the parameters of our preprocessing pipeline
(e.g., speed filtering, smoothing). Ideally, we would have liked to
perform the analysis on a larger dataset, and we hope our find-
ings will be encouragement for others to do so.

In addition to looking at partial remapping behavior across
repeated rooms, we also quantified remapping behavior of ani-
mals across different rooms. In contrast to repeated rooms, we
found no animal-specific remapping behavior across different
rooms (data not shown).

RMCs are not the only metric for characterizing remapping.
PVDPs have also been used previously (Leutgeb et al., 2005; Alme
et al., 2014). RMCs are sensitive to global remapping and measure
changes in place field locations of individual cells across two ses-
sions. On the other hand, PVDPs measure changes in relative firing
rates of cells across the population at a particular location, and so
are more sensitive to rate remapping Leutgeb et al. (2005). We
replicated the analyses in Figures 5 and 7 using PVDPs. Repeated
rooms generally showed elevated PVDPs, and comparisons
between different rooms led to relatively low average PVDPs. The
correlations of Figure 7 were largely confirmed, with one compari-
son being highly significant, one borderline significant, and one
nonsignificant (Fig. 8). We also attempted to confirm the results
using instantaneous firing rate correlations between corecorded
cells (Kubie et al.,, 2020) but did not have large enough simultane-
ously recorded cell populations for interpretable results. Because
the number of simultaneously recorded cells with overlapping
place fields was small on average, we did not observe a statistical
difference in average instantaneous firing rate correlations between
repeated and different rooms.

The number of recorded cells varied across the five animals
(Table 1; range, 25-66 cells). To test whether the size of the
recorded place cell population affected animal-to-animal vari-
ability, we performed random sampling analyses. We took 100
random samples of 25 cells from one of the animals with the
highest number of cells and calculated the average RMC for F1/
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F2 for each random sample (Fig. 9A). We compared that distri-
bution of subsampled population average RMCs to the average
RMC for F1/F2 calculated with the full population for that ani-
mal and for the animal with the smallest population (animal
18024, 25 cells). If variation in recorded population size caused
the variation in RMCs, the average F1/F2 RMC of the animal
with the lowest number of cells (Fig. 94; animal 18024, red line)
should have fallen within the distribution of the average RMCs
of the animal with the highest number of cells after subsampling
to the same population size (Fig. 9A; 17894, blue bars). However,
the average F1/F2 RMC of animal 18024 was clearly outside the
range of the subsampled population RMCs, whereas the average
F1/F2 RMC of animal 17894 was in the center of the range of the
subsampled population RMCs, indicating that variation between
animals in the number of cells sampled did not give rise to the
variation between animals in partial remapping behavior.
Furthermore, we examined whether sampling bias affected the
main finding of the study, shown in Figure 7. Because the animal
with the lowest number of cells had 25 recorded units, we recon-
structed the correlation shown in Figure 7C 100 times, each time
sampling 25 random cells from the other four animals. The sub-
sampled data of each animal was clearly clustered around the
original data point, and the variability across animals was pre-
served (Fig. 9B). Together, these findings suggest that variation
across animals in recorded population size is unlikely to explain
the structured variability in the partial remapping behavior
across animals.

To test whether differences in behavior accounted for the
differences in partial remapping shown in Figures 5-7, we
quantified average speed, acceleration, and absolute angular
velocity of the animals for each session. We wanted to test
whether the correlations between the different RMCs for each
animal were actually because of correlations of those RMCs or
because of some other behavioral variable that was consistent
in each animal. To do so, we constructed GLMs that aug-
mented each of the correlations shown in Figure 7C with one
of these behavioral variables. For each GLM, there were two
independent variables (regressors) and one dependent vari-
able. Exactly like the correlations in Figure 7, the dependent
variable was the average RMCs for a particular set of session
pairs averaged across all pairs of that class. Like the correla-
tions in Figure 7, one of the independent variables was the av-
erage RMCs for a different set of session pairs averaged across
all pairs of that class. In addition, the other independent vari-
able was the difference in one of the behavioral variables
between sessions in the same session pairs as those used for
the dependent variable, averaged across all session pairs in
that class. The idea behind structuring the GLMs this way is
that we wanted to see whether the variability in the neural
data for a given set of session pairs was better predicted by be-
havioral variability in that same set of session pairs or by vari-
ability in the neural data for a completely different set of
session pairs. We used two classes of behavioral control varia-
bles, constructed as explained in Table 3. One class was the
mean differences in the behavioral variables (Table 3, top
three rows). The mean differences in a behavioral variable
between two sessions reflect the dissimilarity with respect to
that behavioral variable, just as RMCs reflect the similarity in
hippocampal maps between two rooms. Therefore, using
mean differences as a control for RMCs compares the similar-
ity of behavior across two sessions with the similarity of hip-
pocampal maps between those same sessions. The other class
was the mean behavioral variables themselves (Table 3,
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PVDP replicates RMC findings. A, PVDP version of Figure 5. Average PVDPs of each animal individually. Overall, PYDPs were elevated for repeated room comparisons. Comparisons

between different sessions showed average PVDPs around zero, with more noise than RMCs. The extent of similarity was variable across animals. B, When averaging PVDPs across animals, the
broad pattern described in A became more apparent. Repetitions of novel rooms and the familiar room showed elevated PVDPs, whereas comparisons between different rooms led to relatively
low average PVDPs. €, PVDP version of Figure 7. The results using PVDPs were less consistent than RMCs but broadly confirmed animal-specific partial remapping behavior. One of the three
GLMs remained significant, and a second was borderline significant. Left, Relationship between mean F and mean N between-session PVDPs. Center, Relationship between mean N1 and mean
N6 RMCs. Rats with higher RMCs for repetitions of N1 at the end of day 1 displayed higher RMCs for N6 at the end of day 2. Although observable, this trend was weaker when using PVDPs
compared with RMCs. Right, Relationship between mean within-session and mean between-session PVDPs. Animals with higher within-session PVDPs (immediate repetitions) displayed a

higher between-session PVDP for repetitions of N1 and N6 at the end of each day.

bottom three rows), which allow us to describe the average
behavior of the animal across all the sessions that were used to
construct the neural variables used for the GLMs in Figure 7C.
In this approach, we controlled for the possibility that behav-
ioral characteristics of the animals may directly relate to RMC
values, as would be expected, for example, if average speed

and RMCs both related to attentional levels. In each of the six
controls of Figure 7C, we observed a high correlation between
the neural independent variable and the neural dependent
variable along with a low correlation between the behavioral
independent variable and the neural dependent variable
(Table 4). This finding confirmed that the high correlation
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calculated the N1/N1!, N1/N1*, N6/N6!,
and N6/N6* RMCs, that is, the RMCs
for the immediate repetitions and day-
end repetitions of N1 and N6. For each
animal, we then calculated the differ-

ence between the N1 comparisons and
the difference between the N6 compar-
isons, that is, (N1/N1!-N1/N1*) and
. (N6/N6!-N6/N6*). This difference char-
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Figure 9.  Experimental sampling controls. A, We compared the animal with the fewest recorded cells (animal 18024, 25

cells) with 100 random subsamples of 25 cells from one of the animals with the most cells (animal 17894, 66 cells). The
bars show the number of occurrences of each average F1/F2 RMC among the 100 subsamples of animal 17894 (blue). The
vertical lines are the average RMC for the F1/F2 session pair for the full recorded population for each animal (animal 17894,
blue; animal 18024, red). The full population RMC for animal 17894 is at the center of its own subsampled range of RMCs,
whereas the full population RMC for animal 18024 is outside the range of subsampled RMCs for animal 17894. B, We re-
created a subsampled version of Figure 7C, where each dot is the RMC calculated using a subsample of 25 cells from that ani-
mal. As evident by the linear arrangement of the data, higher mean within-session RMCs correlated with higher mean

between-session RMCs, and the data for each animal maintained the order of Figure 7C.

between Mean N within-session RMCs and Mean N between-
session RMCs cannot be explained by the speed, acceleration,
and absolute angular velocities of the animal, nor can it be
explained by changes in those behavioral variables. The exact
structure of the GLMs can be found in Table 3.

Hippocampal representations drift over time (Ziv et al,
2013), in that the more time that has elapsed between exposures
to an environment, the more different place field representations
are. This drift has been posited to encode time (Mankin
et al., 2012). One hypothesis stemming from these results is
that different animals may have different rates of representa-
tional drift. To test this hypothesis, we looked at all compari-
sons for repeated sessions. We compared the time elapsed
between the sessions with the average RMC for that compari-
son (Fig. 10A). Surprisingly, we did not observe consistent
representational drift. Of the five animals, only one had a signifi-
cant correlation between time between sessions and average
RMC (17894,r> = 0.136,p = 0.091; 18237,r> = 0.186,p" =
0.045; 19251, r?> =0.003, p = 0.809; 17769,7> = 0.067,p =
0.284; 18024, 72 = 0.050, p = 0.320).

Indeed, comparisons between the F room had consistently
higher RMCs than comparisons between novel rooms N1 and
N6 at the beginning and end of the day, although the familiar
room comparisons had longer intervals that elapsed between
them (Fig. 1). It is possible that representational drift occurs in-
dependently for novel and familiar rooms (Fig. 104, first two
and last three intervals, respectively). Overall, we find that ani-
mal-to-animal variability in partial remapping is not because of
differences in coding of time (speed of representational drift).
Even more strikingly, we did not find consistent representa-
tional drift at all in this dataset, although this may be because
of the fact that this dataset was collected in CA3, which has
previously been shown to have less representational drift than
CA1l (Mankin et al,, 2012). If time is being encoded through
representational drift in this dataset, it must be encoded in-
dependently for novel and familiar rooms. We then looked
specifically at the variability in the speed of drift (speed of
decrease in RMCs over time) in representations of novel
rooms across animals. It might be possible that animal-spe-
cific drift speeds might lead to the animal-specific patterns
we saw in partial remapping behavior. For each animal, we

acterizes the speed of drift in the repre-
sentation of each of the novel rooms for
each animal. We then plotted these differ-
ence values for each room against each
other. We did not find a correlation
between these values across animals (Fig.
10B; ¥* = 0.049, p = 0.721). Overall, it
seems that time encoding through repre-
sentational drift is not consistently occur-
ring in this dataset, and differences in
speed of drift do not lead to the animal-
to-animal variability in partial remapping
that we observe.

Discussion

Hippocampal remapping is a complex and highly variable
phenomenon. In this work, we studied the characteristics of
cell-to-cell and animal-to-animal variability in partial remap-
ping behavior. We compared the firing patterns of individual
cells of five rats across 11 repeated and different rooms.
Although most cells remapped across different room compari-
sons, we observed a large amount of variability across repeated
rooms, indicating that partial remapping occurs in the latter
type of comparison. We then shifted our focus from individual
cells to comparing the changes in the hippocampal maps of the
animals across repeated and different sessions, using average
RMCs. We discovered extensive remapping across different
rooms but much less remapping across repeating sessions, indi-
cating that hippocampal maps are similar yet not identical
across repeated sessions. Although this general remapping pat-
tern applied to all five animals, we detected variability across
the animals. We quantified the pattern of variability in the par-
tial remapping behavior of the animals by correlating different
categories of neural partial remapping data (Fig. 7). Across all
comparisons, we discovered a high correlation between the
neural variables of the five animals, and the animals stratified
along a spectrum that was preserved for each comparison.
We concluded that the animal-to-animal variability in partial
remapping behavior is structured. Neither the subsampling
of place cells (Fig. 9) nor the underlying behavioral charac-
teristics of the animals (Table 4) accounted for the structured
variability we observed, raising the question of the origins of
this phenomenon.

Definition of remapping

The term hippocampal remapping has a variety of uses in the lit-
erature. Sometimes remapping is used to refer to what is now
known as global remapping. For example, in a recent compre-
hensive review of hippocampal remapping, Kubie et al. (2020)
use this as their primary definition of remapping. However, par-
tial remapping and rate remapping are forms of remapping that
are commonly explored as well, as reviewed toward the end by
Kubie et al. (2020). Indeed, the classic studies of remapping
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Table 4. Effect of behavioral parameters on the results shown in Fig. 7¢
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Independent Variable 1 Independent Variable 2

Mean N within session N/A

Mean N within session Mean speed difference N between session

Mean N within session Mean acceleration difference N between session

Mean N within session Mean absolute angular velocity difference N between session
Mean N within session Mean speed N between session

Mean N within session Mean acceleration N between session

Mean N within session Mean absolute angular velocity N between session

Dependent Variable OO m@  pQ m(2)
Mean N between session 0.93 0.005 1.66 N/A N/A
Mean N between session 0.97 0.04 1.22 0.15 —0.12
Mean N between session 0.95 0.05 1.32 0.30 —0.06
Mean N between session 091 0.04 1.76 0.75 0.0013
Mean N between session 0.92 0.05 1.49 0.57 0.01
Mean N between session 0.93 0.05 1.47 0.49 0.01
Mean N between session 0.94 0.02 1.66 0.35 —0.0018

We constructed a total of 6 new GLMs (rows 2-7) to control for the findings shown in Fig. 7C (row 1). Each time, we recreated the GLM of Fig. 7C but added a second independent variable to the model to examine whether the behav-
for of the animals could explain the structured heterogeneity in their partial remapping. Across all 6 controls, the correlation between the two types of neural data (independent variable 1 and dependent variable) was high, as indicated
by the non-zero slope values (m1). The relationship between the neural variables remained significant (p(1) << 0.05) even after the incorporation of the behavioral controls. However, we found no correlation between the behavioral
data and the neural data (independent variable 2 and dependent variable), as indicated by the negligible slope values (m2). The relationship between the behavioral and neural data was not significant (p(2) > 0.05), confirming that

the variability in the animals' remapping characteristics cannot be explained by the variability in these behavioral metrics.

reported partial remapping (remapping of A B
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Figure 10. Effect of the passage of time on RMCs in repeated rooms. A, We compared the amount of time (x-axis)

The current study follows the view
that remapping occurs on a continuum
and explores variability between animals
in extent of remapping between different
experiences in repeated environments.
We did not find animal-to-animal vari-
ability in extent of remapping between
experiences in different environments, as
all animals expressed complete or global
remapping between experiences in differ-
ent environments (Figs. 4, 5, RMCs near
zero). However, we did find consistent
animal-to-animal variability in extent of partial remapping
between different experiences in repeated environments.

Changes in hippocampal activity: remapping, stability, drift?
There are several potential factors that may cause changes in the
neural representation of a controlled stimulus, such as an experi-
ment room. One possibility is that the animal is representing
uncontrolled changes in the stimulus. Another possibility is that
the representation has drifted; the computational content of the
representation is the same, but the neurons involved have
changed (Ziv et al., 2013; Rule et al., 2019). Earlier literature
referred to a similar phenomenon as place field instability
(Thompson and Best, 1990; Kentros et al., 2004; Wills et al.,
2010), although place field instability can also refer to forget-
ting, in which the computational content changes as well
(Kentros et al., 1998). A final possibility is that the computa-
tional categorization of the animals of the stimulus has
changed as a result of intervening experience (Sanders et al,,
2020). This possibility is especially relevant as place field
maps clearly change as a result of experience (Shapiro et al.,
1997; Lever et al., 2002; Law et al., 2016). Further work will
be necessary to distinguish among these possibilities, both in

between sessions with RMCs for that comparison (y-axis). We used immediate repetitions of novel rooms (e.g., N1/N1},
15 min), repetitions of novel rooms later in the day (e.g., N1/N1%, 285 min), repetitions of the familiar room during the same
day (e.g., F1/F1%, 390 min), repetitions of the familiar room at the end of day 1 versus the beginning of day 2 (F1*/F2,
1050 min), repetitions of the familiar room at the beginning of day 1 versus the beginning of day 2 (F1/F2, 1440 min), and
the repetition of the familiar room at the beginning of day 1 versus the end of day 2 (F1/F2*, 1830 min) as comparisons. We
did not see a consistent relationship between time elapsed between sessions and RMCs. B, For each animal, we calculated
the N1/NTL, N1/N1*, N6/N6!, and N6/N6* RMCs, that is, the RMCs for the immediate repetitions and day-end repetitions of
N1 and Né. For each animal, we then calculated the difference between the N1 comparisons (RMC Diff. N1) and the differ-
ence between the N6 comparisons (RMC Diff. N6), that is, (NT/N1!-N1/N1*) and (N6/N6!-N6/N6*). We did not find a corre-
lation between these differences across animals.

our work and in the field in general. A key question is
whether and when coding changes are playing a computa-
tional role as opposed to being ancillary to computation.
Experiments similar to those proposed below and those pro-
posed by Sanders et al. (2020) can determine the extent to
which hippocampal coding changes lead to behavioral and
learning changes.

Possible origins of animal-specific remapping behavior
There are several potential explanations for this animal-specific
partial remapping behavior that we cannot yet distinguish.

One class of possibilities (strategy variability) is that animals
have computational-level differences in how they deal with the
inherent ambiguity in context definition. As described in the
Introduction, animals do not have direct access to context labels
and therefore must infer the hidden context identity, a process
characterized as hidden state inference by Sanders et al. (2020).
The trade-off between splitting and lumping (increased differen-
tiation vs increased generalization, more vs fewer hidden states)
has no a priori solution, which is why populations will have indi-
viduals with a variety of tendencies on that axis (Simpson, 1945).
Sanders et al. (2020) suggested that differing settings of a param-
eter of the model, alpha, could underlie variation in remapping
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behavior as it controls the tendency of the model to prefer a
greater or smaller number of hidden states. Of course, other
forms of variation could arise from other parameters of that
model or of other models of remapping behavior that explicitly
include parameters with no a priori optimal values. In short, this
class of possibilities suggests that variability in remapping behav-
ior might correspond to variability in problem-solving strategies.
Another class of possibilities (capability variability) is that
animals have differences in cognitive abilities. Learning impair-
ments can cause an animal to be unable to retrieve a memory of
an environment. If that occurs, the map would not be reused
when the animal re-enters the environment, which would result
in global remapping (near-zero average RMC). A previous result
interpreted using this perspective is a series of studies on aging
rats by Barnes et al. (1997), reviewed by Lister and Barnes
(2009), who show that aging animals have a greater tendency to
globally remap when presented with the same environment
(although it has also been shown that aged animals have a lower
tendency to remap when presented with a modified environ-
ment; Wilson et al., 2003). Indeed, others showed that among
aged animals, tendency to remap correlated with other firing
characteristics (Hok et al., 2012). In this way, it could be that the
variability across animals observed in our data was the result of
learning deficits in some animals. It is unlikely that aging per se
is the cause of variability in this dataset, as all animals were 4-
5 months at the time of implantation (see above, Materials and
Methods), but it is possible that other forms of learning differen-
ces could be present among the animals. A related explanation in
this class is that remapping can be induced by a lack of attention
paid to the cues that differentiate environments. For example,
Kentros et al. (2004) show that changing attentional demands
changed the tendency of animals to remap. The experimental
data we analyzed were recorded during a task with low atten-
tional demands, so intrinsic differences in attention among ani-
mals may have given rise to differences in remapping tendencies.
This class of possibilities suggests that variability in remapping
behavior might correspond to variability in cognitive capabilities.
The key distinction between these classes of hypotheses is
how variability in neural responses corresponds to variability in
behavior. The strategy variability hypothesis would suggest that
different animals would be differentially skilled at different tasks.
The capability variability hypothesis would suggest that some
animals would be better at all context-dependent tasks.
Unfortunately, it is unclear exactly how remapping relates to
behavior. The standard assumption in the field is that hippocam-
pal remapping corresponds to context-specific learning, that ani-
mals will generalize behaviors learned between experiences using
the same map but not between experiences using different maps
(Colgin et al., 2008). This assumption has not been directly pro-
ven, and in fact there is limited evidence to the contrary (Jeffery
et al., 2003). For the sake of argument, let’s accept this assump-
tion, however. Under the capability variability hypothesis, ani-
mals that remap more would simply have more difficulty
generalizing knowledge past the experience they learned it in as
they do not reuse maps. Under the strategy variability hypothe-
sis, something more nuanced occurs. Animals with a greater
tendency to remap would be faster at learning tasks that required
distinctions, such as a context-specific go/no-go task. This would
be because animals that remap less would have a greater tend-
ency to generalize across slightly different experiences. On the
other hand, animals with a lower tendency to remap would be
faster at learning tasks that required greater levels of generaliza-
tion. Another potential behavioral prediction of the strategy
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variability hypothesis is that the tendency of remapping might
correspond to the extent of generalization during fear conditioning.
When a shock is only presented a single time, the animal has to
infer what extent of generalization of that experience is appropri-
ate. Differences in sensitivity in environmental changes giving rise
to remapping would be predicted to correspond to differences in
sensitivity to environmental changes that elicit a conditioned fear
response.

One final possibility is that differences in the recording loca-
tions in different animals may have given rise to the differences
in remapping behavior, if different parts of the hippocampus
respond characteristically differently. There are reasons to
believe that remapping might have different properties along the
CA3-CA1 (proximo-distal) axis (Lee et al., 2004; Leutgeb et al.,
2004; Guzowski et al., 2004) as well as along the dorsal-ventral
(septotemporal) axis (Royer et al,, 2010). If these different ani-
mals were implanted in characteristically different locations, the
remapping behavior of the recorded cells might be consistently
different even if the animals in general did not have consistent
differences. We do not have access to the recording locations of
the animals, so we could not verify this hypothesis.

One result that gives rise to several questions is that of the
subsampling done in Figure 9. In addition to the across-ani-
mal correlation that is preserved despite subsampling, there
is also the within-animal correlation across separate subsam-
ples. This implies that different cells within an animal have
different tendencies to remap. This could arise with the pre-
vious hypothesis, that different recording locations might
have characteristically different remapping behaviors. A
related possibility was mentioned in Sanders et al. (2020),
namely, that hierarchical hidden state inference could be
performed by having a gradient of remapping tendencies
within a population.

Finally, this article suggests a poor man’s remapping metric—
within-session variability. We show that within-session partial
remapping correlates with between-session partial remapping
(Fig. 7C). If between-session remapping tendency turns out to
correlate with learning style (as suggested by the strategy vari-
ability hypothesis) or with learning capability (as suggested by
the capability variability hypothesis), measures of within-session
firing variability such as overdispersion (Olypher et al., 2002;
Kelemen and Fenton, 2016) could be used as a proxy for the
tendency to notice small differences or with learning speed,
respectively. Indeed, remapping has been shown to correlate
with overdispersion in aged rats (Hok et al., 2012). The utility of
this measure awaits research into its behavioral relevance, but
certainly those designing future studies of remapping should
keep it in mind.
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