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ABSTRACT

In this paper, we present a multimodal Recurrent Neural Network (m-RNN) model
for generating novel image captions. It directly models the probability distribution
of generating a word given previous words and an image. Image captions are
generated according to this distribution. The model consists of two sub-networks:
a deep recurrent neural network for sentences and a deep convolutional network
for images. These two sub-networks interact with each other in a multimodal layer
to form the whole m-RNN model. The effectiveness of our model is validated on
four benchmark datasets (IAPR TC-12, Flickr 8K, Flickr 30K and MS COCO).
Our model outperforms the state-of-the-art methods. In addition, the m-RNN
model can be applied to retrieval tasks for retrieving images or sentences, and
achieves significant performance improvement over the state-of-the-art methods
which directly optimize the ranking objective function for retrieval. !

1 INTRODUCTION

Obtaining sentence level descriptions for images is becoming an important task and it has many ap-
plications, such as early childhood education, image retrieval, and navigation for the blind. Thanks
to the rapid development of computer vision and natural language processing technologies, recent
work has made significant progress on this task (see a brief review in Section 2). Many previous
methods treat it as a retrieval task. They learn a joint embedding to map the features of both sen-
tences and images to the same semantic space. These methods generate image captions by retrieving
them from a sentence database. Thus, they lack the ability of generating novel sentences or describ-
ing images that contain novel combinations of objects and scenes.

In this work, we propose a multimodal Recurrent Neural Networks (m-RNN) model ? to address
both the task of generating novel sentences descriptions for images, and the task of image and
sentence retrieval. The whole m-RNN model contains a language model part, a vision part and a
multimodal part. The language model part learns a dense feature embedding for each word in the
dictionary and stores the semantic temporal context in recurrent layers. The vision part contains a
deep Convolutional Neural Network (CNN) which generates the image representation. The multi-
modal part connects the language model and the deep CNN together by a one-layer representation.

I'The project page of this work is: www.stat .ucla.edu/~junhua.mao/m-RNN.html

%A previous version of this work appears in the NIPS 2014 Deep Learning Workshop with the title “Explain
Images with Multimodal Recurrent Neural Networks” http://arxiv.org/abs/1410.1090 (Maoetal.
(2014)). We observed subsequent arXiv papers which also use recurrent neural networks in this topic and cite
our work. We gratefully acknowledge them.
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Figure 1: Examples of the generated and two top-ranked retrieved sentences given the query image
from IAPR TC-12 dataset. The sentences can well describe the content of the images. We show a
failure case in the fourth image, where the model mistakenly treats the lake as the sky and misses
all the people. More examples from the MS COCO dataset can be found on the project page:
www.stat.ucla.edu/~junhua.mao/m-RNN.html.

Our m-RNN model is learned using a log-likelihood cost function (see details in Section 4). The
errors can be backpropagated to the three parts of the m-RNN model to update the model parameters
simultaneously.

In the experiments, we validate our model on four benchmark datasets: IAPR TC-12 (Grubinger
et al. (2006)), Flickr 8K (Rashtchian et al. (2010)), Flickr 30K (Young et al. (2014)) and MS COCO
(Lin et al. (2014)). We show that our method achieves state-of-the-art performance, significantly
outperforming all the other methods for the three tasks: generating novel sentences, retrieving im-
ages given a sentence and retrieving sentences given an image. Our framework is general and can
be further improved by incorporating more powerful deep representations for images and sentences.

2 RELATED WORK

Deep model for computer vision and natural language. The methods based on the deep neural
network developed rapidly in recent years in both the field of computer vision and natural lan-
guage. For computer vision, Krizhevsky et al. (2012) propose a deep Convolutional Neural Net-
works (CNN) with 8 layers (denoted as AlexNet) and outperform previous methods by a large
margin in the image classification task of ImageNet challenge (Russakovsky et al. (2014)). This
network structure is widely used in computer vision, e.g. Girshick et al. (2014) design a object de-
tection framework (RCNN) based on this work. Recently, Simonyan & Zisserman (2014) propose a
CNN with over 16 layers (denoted as VggNet) and performs substantially better than the AlexNet.
For natural language, the Recurrent Neural Network (RNN) shows the state-of-the-art performance
in many tasks, such as speech recognition and word embedding learning (Mikolov et al. (2010; 2011;
2013)). Recently, RNNs have been successfully applied to machine translation to extract semantic
information from the source sentence and generate target sentences (e.g. Kalchbrenner & Blunsom
(2013), Cho et al. (2014) and Sutskever et al. (2014)).

Image-sentence retrieval. Many previous methods treat the task of describing images as a retrieval
task and formulate the problem as a ranking or embedding learning problem (Hodosh et al. (2013);
Frome et al. (2013); Socher et al. (2014)). They first extract the word and sentence features (e.g.
Socher et al. (2014) uses dependency tree Recursive Neural Network to extract sentence features)
as well as the image features. Then they optimize a ranking cost to learn an embedding model that
maps both the sentence feature and the image feature to a common semantic feature space. In this
way, they can directly calculate the distance between images and sentences. Recently, Karpathy
et al. (2014) show that object level image features based on object detection results can generate
better results than image features extracted at the global level.

Generating novel sentence descriptions for images. There are generally three categories of meth-
ods for this task. The first category assumes a specific rule of the language grammar. They parse
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Figure 2: Illustration of the simple Recurrent Neural Network (RNN) and our multimodal Recurrent
Neural Network (m-RNN) architecture. (a). The simple RNN. (b). Our m-RNN model. The inputs
of our model are an image and its corresponding sentence descriptions. wy, wy, ..., wi, represents the
words in a sentence. We add a start sign wg,x and an end sign weng to all the training sentences. The
model estimates the probability distribution of the next word given previous words and the image.
It consists of five layers (i.e. two word embedding layers, a recurrent layer, a multimodal layer and
a softmax layer) and a deep CNN in each time frame. The number above each layer indicates the
dimension of the layer. The weights are shared among all the time frames. (Best viewed in color)

the sentence and divide it into several parts (Mitchell et al. (2012); Gupta & Mannem (2012)). Each
part is associated with an object or an attribute in the image (e.g. Kulkarni et al. (2011) uses a Con-
ditional Random Field model and Farhadi et al. (2010) uses a Markov Random Field model). This
kind of method generates sentences that are syntactically correct. The second category retrieves
similar captioned images, and generates new descriptions by generalizing and re-composing the re-
trieved captions (Kuznetsova et al. (2014)). The third category of methods, which is more related
to our method, learns a probability density over the space of multimodal inputs (i.e. sentences and
images), using for example, Deep Boltzmann Machines (Srivastava & Salakhutdinov (2012)), and
topic models (Barnard et al. (2003); Jia et al. (2011)). They generate sentences with richer and more
flexible structure than the first group. The probability of generating sentences using the model can
serve as the affinity metric for retrieval. Our method falls into this category. More closely related
to our tasks and method is the work of Kiros et al. (2014b), which is built on a Log-BiLinear model
(Mnih & Hinton (2007)) and use AlexNet to extract visual features. It needs a fixed length of context
(i.e. five words), whereas in our model, the temporal context is stored in a recurrent architecture,
which allows arbitrary context length.

Shortly after Mao et al. (2014), several papers appear with record breaking results (e.g. Kiros et al.
(2014a); Karpathy & Fei-Fei (2014); Vinyals et al. (2014); Donahue et al. (2014); Fang et al. (2014);
Chen & Zitnick (2014)). Many of them are built on recurrent neural networks. It demonstrates the
effectiveness of storing context information in a recurrent layer. Our work has two major difference
from these methods. Firstly, we incorporate a two-layer word embedding system in the m-RNN
network structure which learns the word representation more efficiently than the single-layer word
embedding. Secondly, we do not use the recurrent layer to store the visual information. The image
representation is inputted to the m-RNN model along with every word in the sentence description.
It utilizes of the capacity of the recurrent layer more efficiently, and allows us to achieve state-of-
the-art performance using a relatively small dimensional recurrent layer. In the experiments, we
show that these two strategies lead to better performance. Our method is still the best-performing
approach for almost all the evaluation metrics.

3 MODEL ARCHITECTURE

3.1 SIMPLE RECURRENT NEURAL NETWORK

We briefly introduce the simple Recurrent Neural Network (RNN) or Elman network (Elman
(1990)). Its architecture is shown in Figure 2(a). It has three types of layers in each time frame:
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the input word layer w, the recurrent layer r and the output layer y. The activation of input, re-
current and output layers at time ¢ is denoted as w(t), r(t), and y(t) respectively. w(t) denotes
the current word vector, which can be a simple 1-of-N coding representation h(t) (i.e. the one-hot
representation, which is binary and has the same dimension as the vocabulary size with only one
non-zero element) Mikolov et al. (2010). y(¢) can be calculated as follows:

x(t) = [w(t) r(t = 1] r(t) = f1(U-x(t); y(t)=g1(V-r(t)); (1)

where x(t) is a vector that concatenates w(¢) and r(t — 1), f1(.) and g; (.) are element-wise sigmoid
and softmax function respectively, and U, V are weights which will be learned.

The size of the RNN is adaptive to the length of the input sequence. The recurrent layers connect
the sub-networks in different time frames. Accordingly, when we do backpropagation, we need to
propagate the error through recurrent connections back in time (Rumelhart et al. (1988)).

3.2 OUR M-RNN MODEL

The structure of our multimodal Recurrent Neural Network (m-RNN) is shown in Figure 2(b). It
has five layers in each time frame: two word embedding layers, the recurrent layer, the multimodal
layer, and the softmax layer).

The two word embedding layers embed the one-hot input into a dense word representation. It en-
codes both the syntactic and semantic meaning of the words. The semantically relevant words can be
found by calculating the Euclidean distance between two dense word vectors in embedding layers.
Most of the sentence-image multimodal models (Karpathy et al. (2014); Frome et al. (2013); Socher
et al. (2014); Kiros et al. (2014b)) use pre-computed word embedding vectors as the initialization of
their model. In contrast, we randomly initialize our word embedding layers and learn them from the
training data. We show that this random initialization is sufficient for our architecture to generate
the state-of-the-art result. We treat the activation of the word embedding layer II (see Figure 2(b))
as the final word representation, which is one of the three direct inputs of the multimodal layer.

After the two word embedding layers, we have a recurrent layer with 256 dimensions. The calcula-
tion of the recurrent layer is slightly different from the calculation for the simple RNN. Instead of
concatenating the word representation at time ¢ (denoted as w(t)) and the recurrent layer activation
attime ¢ — 1 (denoted as r(¢ — 1)), we first map r(¢ — 1) into the same vector space as w(t) and add
them together:

r(t) = fa(Up - x(t = 1) + w(t)); )

where “+” represents element-wise addition. We set f5(.) to be the Rectified Linear Unit (ReLU),
inspired by its the recent success when training very deep structure in computer vision field (Nair
& Hinton (2010); Krizhevsky et al. (2012)). This differs from the simple RNN where the sigmoid
function is adopted (see Section 3.1). ReLU is faster, and harder to saturate or overfit the data than
non-linear functions like the sigmoid. When the backpropagation through time (BPTT) is conducted
for the RNN with sigmoid function, the vanishing or exploding gradient problem appears since even
the simplest RNN model can have a large temporal depth 3. Previous work (Mikolov et al. (2010;
2011)) use heuristics, such as the truncated BPTT, to avoid this problem. The truncated BPTT
stops the BPTT after k time steps, where k£ is a hand-defined hyperparameter. Because of the good
properties of ReLLU, we do not need to stop the BPTT at an early stage, which leads to better and
more efficient utilization of the data than the truncated BPTT.

After the recurrent layer, we set up a 512 dimensional multimodal layer that connects the language
model part and the vision part of the m-RNN model (see Figure 2(b)). This layer has three inputs:
the word-embedding layer II, the recurrent layer and the image representation. For the image rep-
resentation, here we use the activation of the 7" layer of AlexNet (Krizhevsky et al. (2012)) or 151
layer of VggNet (Simonyan & Zisserman (2014)), though our framework can use any image fea-
tures. We map the activation of the three layers to the same multimodal feature space and add them
together to obtain the activation of the multimodal layer:

m(t) = g2(Vy - w(t) + Vy - x(t) + Vy - I); 3)

3We tried Sigmoid and Scaled Hyperbolic Tangent function as the non-linear functions for RNN in the
experiments but they lead to the gradient explosion problem easily.
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where “+” denotes element-wise addition, m denotes the multimodal layer feature vector, I denotes
the image feature. g (.) is the element-wise scaled hyperbolic tangent function (LeCun et al. (2012)):

g2(x) = 1.7159 - tanh(%x) 4)

This function forces the gradients into the most non-linear value range and leads to a faster training
process than the basic hyperbolic tangent function.

Both the simple RNN and m-RNN models have a softmax layer that generates the probability dis-
tribution of the next word. The dimension of this layer is the vocabulary size M, which is different
for different datasets.

4 TRAINING THE M-RNN

To train our m-RNN model we adopt a log-likelihood cost function. It is related to the Perplexity of
the sentences in the training set given their corresponding images. Perplexity is a standard measure
for evaluating language model. The perplexity for one word sequence (i.e. a sentence) wi.r, is
calculated as follows:

L
1
log, PPL(wi:[T) = -4 > logy P(wp|wiin-1,T) (5)
n=1

where L is the length of the word sequence, PP L(ws.1,|I) denotes the perplexity of the sentence
wy.r, given the image I. P(w,|wi.,—1,I) is the probability of generating the word w,, given I and
previous words wj.,—1. It corresponds to the activation of the SoftMax layer of our model.

The cost function of our model is the average log-likelihood of the words given their context words
and corresponding images in the training sentences plus a regularization term. It can be calculated
by the perplexity:

N,
1 «— i :
C = > Li-logy PPL(wy [10) + X - [6]3 ©)
i=1
where Ny and N denotes the number of sentences and the number of words in the training set
receptively, L; denotes the length of i*" sentences, and # represents the model parameters.

Our training objective is to minimize this cost function, which is equivalent to maximize the proba-
bility of generating the sentences in the training set using the model. The cost function is differen-
tiable and we use backpropagation to learn the model parameters.

5 SENTENCE GENERATION, IMAGE RETRIEVAL AND SENTENCE RETRIEVAL

We use the trained m-RNN model for three tasks: 1) Sentences generation, 2) Image retrieval (re-
trieving most relevant images to the given sentence), 3) Sentence retrieval (retrieving most relevant
sentences to the given image).

The sentence generation process is straightforward. Starting from the start sign Wy Or arbitrary
number of reference words (e.g. we can input the first K words in the reference sentence to the
model and then start to generate new words), our model can calculate the probability distribution
of the next word: P(w,,|w1.,—1,1). Then we can sample from this probability distribution to pick
the next word. In practice, we find that selecting the word with the maximum probability performs
slightly better than sampling. After that, we input the picked word to the model and continue the
process until the model outputs the end sign wepg.

For the retrieval tasks, we use our model to calculate the probability of generating a sentence w;.r,
given an image I: P(w..1|I) = [],, P(wn|wi:n—1,I). The probability can be treated as an affinity
measurement between sentences and images.

For the image retrieval task, given the query sentence w?: 1,» we rank the dataset images I” accord-

ing to the probability P(wi2 L|ID ) and retrieved the top ranked images. This is equivalent to the
perplexity-based image retrieval in Kiros et al. (2014b).
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The sentence retrieval task is trickier because there might be some sentences that have high proba-
bility or perplexity for any image query (e.g. sentences consist of many frequently appeared words).
To solve this problem, Kiros et al. (2014b) uses the perplexity of a sentence conditioned on the
averaged image feature across the training set as the reference perplexity to normalize the original
perplexity. Different from them, we use the normalized probability where the normalization factor
is the marginal probability of w?; :

P(wy JI?)/P(wr)y,);  P(wilp) = Yy P(w, L) P(T) ©)
where wl); denotes the sentence in the dataset, I? denotes the query image, and I are images
sampled from the training set. We approximate P(I/) by a constant and ignore this term. This

strategy leads to a much better performance than that in Kiros et al. (2014b) in the experiments.
The normalized probability is equivalent to the probability P(I?|w?’, ), which is symmetric to the

probability P (w? 1 |IP) used in the image retrieval task.

6 LEARNING OF SENTENCE AND IMAGE FEATURES

The architecture of our model allows the gradients from the loss function to be backpropagated to
both the language modeling part (i.e. the word embedding layers and the recurrent layer) and the
vision part (e.g. the AlexNet or VGGNet).

For the language part, as mentioned above, we randomly initialize the language modeling layers and
learn their parameters. For the vision part, we use the pre-trained AlexNet (Krizhevsky et al. (2012))
or the VggNet (Simonyan & Zisserman (2014)) on ImageNet dataset (Russakovsky et al. (2014)).
Recently, Karpathy et al. (2014) show that using the RCNN object detection results (Girshick et al.
(2014)) combined with the AlexNet features performs better than simply treating the image as a
whole frame. In the experiments, we show that our method performs much better than Karpathy
et al. (2014) when the same image features are used, and is better than or comparable to their results
even when they use more sophisticated features based on object detection.

We can update the CNN in the vision part of our model according to the gradient backpropagated
from the multimodal layer. In this paper, we fix the image features and the deep CNN network in the
training stage due to a shortage of data. In future work, we will apply our method on large datasets
(e.g. the complete MS COCO dataset, which has not yet been released) and finetune the parameters
of the deep CNN network in the training stage.

The m-RNN model is trained using Baidu’s internal deep learning platform PADDLE, which allows
us to explore many different model architectures in a short period. The hyperparameters, such as
layer dimensions and the choice of the non-linear activation functions, are tuned via cross-validation
on Flickr8K dataset and are then fixed across all the experiments. It takes 25 ms on average to
generate a sentence (excluding image feature extraction stage) on a single core CPU.

7 EXPERIMENTS

7.1 DATASETS

We test our method on four benchmark datasets with sentence level annotations: IAPR TC-12 (Grub-
inger et al. (2006)), Flickr 8K (Rashtchian et al. (2010)), Flickr 30K (Young et al. (2014)) and MS
COCO (Lin et al. (2014)).

TAPR TC-12. This dataset consists of around 20,000 images taken from different locations around
the world. It contains images of different sports and actions, people, animals, cities, landscapes,
etc. For each image, it provides at least one sentence annotation. On average, there are about 1.7
sentence annotations for one image. We adopt the standard separation of training and testing set as
previous works (Guillaumin et al. (2010); Kiros et al. (2014b)) with 17,665 images for training and
1962 images for testing.

Flickr8K. This dataset consists of 8,000 images extracted from Flickr. For each image, it provides
five sentence annotations. We adopt the standard separation of training, validation and testing set
provided by the dataset. There are 6,000 images for training, 1,000 images for validation and 1,000
images for testing.
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Flickr30K. This dataset is a recent extension of Flickr8K. For each image, it also provides five
sentences annotations. It consists of 158,915 crowd-sourced captions describing 31,783 images.
The grammar and style for the annotations of this dataset is similar to Flickr8K. We follow the
previous work (Karpathy et al. (2014)) which used 1,000 images for testing. This dataset, as well as
the Flick8K dataset, were originally used for the image-sentence retrieval tasks.

MS COCO. The current release of this recently proposed dataset contains 82,783 training images
and 40,504 validation images. For each image, it provides five sentences annotations. We randomly
sampled 4,000 images for validation and 1,000 images for testing from their currently released
validation set. The dataset partition of MS COCO and Flickr30K is available in the project page *.

7.2 EVALUATION METRICS

Sentence Generation. Following previous works, we use the sentence perplexity (see Equ. 5) and
BLEU scores (i.e. B-1, B-2, B-3, and B-4) (Papineni et al. (2002)) as the evaluation metrics. BLEU
scores were originally designed for automatic machine translation where they rate the quality of a
translated sentences given several references sentences. Similarly, we can treat the sentence gener-
ation task as the “translation” of the content of images to sentences. BLEU remains the standard
evaluation metric for sentence generation methods for images, though it has drawbacks. For some
images, the reference sentences might not contain all the possible descriptions in the image and
BLEU might penalize some correctly generated sentences. Please see more details of the calcula-
tion of BLEU scores for this task in the supplementary material section 9.3 5.

Sentence Retrieval and Image Retrieval. We adopt the same evaluation metrics as previous works
(Socher et al. (2014); Frome et al. (2013); Karpathy et al. (2014)) for both the tasks of sentences
retrieval and image retrieval. We use R@K (K =1, 5, 10) as the measurement. R@XK is the recall
rate of a correctly retrieved groundtruth given top K candidates. Higher R@K usually means better
retrieval performance. Since we care most about the top-ranked retrieved results, the R@K scores
with smaller K are more important.

The Med r is another metric we use, which is the median rank of the first retrieved groundtruth
sentence or image. Lower Med r usually means better performance. For IAPR TC-12 datasets,
we use additional evaluation metrics to conduct a fair comparison with previous work (Kiros et al.
(2014b)). Please see the details in the supplementary material section 9.3.

7.3 RESULTS ON IAPR TC-12

The results of the sentence generation task® are shown in Table 1. Ours-RNN-Base serves as a
baseline method for our m-RNN model. It has the same architecture as m-RNN except that it does
not have the image representation input.

To conduct a fair comparison, we follow the same experimental settings of Kiros et al. (2014b)
to calculate the BLEU scores and perplexity. These two evaluation metrics are not necessarily
correlated to each other for the following reasons. As mentioned in Section 4, perplexity is calculated
according to the conditional probability of the word in a sentence given all of its previous reference
words. Therefore, a strong language model that successfully captures the distributions of words in
sentences can have a low perplexity without the image content. But the content of the generated
sentences might be uncorrelated to images. From Table 1, we can see that although our baseline
method of RNN generates a low perplexity, its BLEU score is low, indicating that it fails to generate
sentences that are consistent with the content of images.

Table 1 shows that our m-RNN model performs much better than our baseline RNN model and the
state-of-the-art methods both in terms of the perplexity and BLEU score.

‘www.stat.ucla.edu/~junhua.mao/m-RNN.html

5The BLEU outputted by our implementation is slightly lower than the recently released MS COCO caption
evaluation toolbox (Chen et al. (2015)) because of different tokenization methods of the sentences. We re-
evaluate our method using the toolbox in the current version of the paper.

®Kiros et al. (2014b) further improved their results after the publication. We compare our results with their
updated ones here.
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PPL  B-1 B-2 B-3 B-4
LBL, Mnih & Hinton (2007) 929 0321 0.145 0.064 -
MLBLB-AlexNet, Kiros et al. (2014b) | 9.86  0.393 0.211 0.112 -
MLBLF-AlexNet, Kiros et al. (2014b) | 9.90 0387 0.209 0.115 -

Gupta et al. (2012) - 0.15 0.06 0.01 -
Gupta & Mannem (2012) - 0.33 0.18 0.07 -

" Ours-RNN-Base | 777 0307 0.177 0.096 0.043
Ours-m-RNN-AlexNet 6.92 0482 0.357 0.269 0.208

Table 1: Results of the sentence generation task on the IAPR TC-12 dataset. “B” is short for BLEU.

Sentence Retrival (Image to Text) | Image Retrival (Text to Image)
R@1 R@5 R@10 Medr | R@l R@5 R@10 Medr
Ours-m-RNN | 20.9 438 54.4 8 132 31.2 40.8 21

Table 2: R@K and median rank (Med r) for IJAPR TC-12 dataset.

Sentence Retrival (Image to Text) | Image Retrival (Text to Image)

R@l R@5 R@10 Medr | R@l R@5 R@10 Medr
Random 0.1 0.5 1.0 631 0.1 0.5 1.0 500
SDT-RNN-AlexNet 4.5 18.0 28.6 32 6.1 18.5 29.0 29
Socher-avg-RCNN 6.0 22.7 34.0 23 6.6 21.6 31.7 25
DeViSE-avg-RCNN 4.8 16.5 27.3 28 5.9 20.1 29.6 29
DeepFE-AlexNet 5.9 19.2 27.3 34 5.2 17.6 26.5 32
DeepFE-RCNN 126 329 44.0 14 9.7 29.6 42.5 15

" Ours-m-RNN-AlexNet | 145 37.2 485 11 [ 115 31.0 424 15

Table 3: Results of R@K and median rank (Med r) for Flickr8K dataset. “-AlexNet” denotes the
image representation based on AlexNet extracted from the whole image frame. “-RCNN” denotes
the image representation extracted from possible objects detected by the RCNN algorithm.

For the retrieval tasks, since there are no publicly available results of R@K and Med r in this dataset,
we report R@K scores of our method in Table 2 for future comparisons. The result shows that
20.9% top-ranked retrieved sentences and 13.2% top-ranked retrieved images are groundtruth. We
also adopt additional evaluation metrics to compare our method with Kiros et al. (2014b), see sup-
plementary material Section 9.2.

7.4 RESULTS ON FLICKR8K

This dataset was widely used as a benchmark dataset for image and sentence retrieval. The R@K
and Med r of different methods are shown in Table 3. We compare our model with several state-of-
the-art methods: SDT-RNN (Socher et al. (2014)), DeViSE (Frome et al. (2013)), DeepFE (Karpathy
et al. (2014)) with various image representations. Our model outperforms these methods by a large
margin when using the same image representation (e.g. AlexNet). We also list the performance of
methods using more sophisticated features in Table 3. “-avg-RCNN” denotes methods with features
of the average CNN activation of all objects above a detection confidence threshold. DeepFE-RCNN
Karpathy et al. (2014) uses a fragment mapping strategy to better exploit the object detection results.
The results show that using these features improves the performance. Even without the help from
the object detection methods, however, our method performs better than these methods in almost all
the evaluation metrics. We will develop our framework using better image features based on object
detection in the future work.

The PPL, B-1, B-2, B-3 and B-4 of the generated sentences using our m-RNN-AlexNet model in
this dataset are 24.39, 0.565, 0.386, 0.256, and 0.170 respectively.
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Sentence Retrival (Image to Text) | Image Retrival (Text to Image)
R@1 R@5 R@10 Medr | R@l1 R@5 R@10 Medr
Flickr30K
Random 0.1 0.6 1.1 631 0.1 0.5 1.0 500
DeViSE-avg-RCNN 4.8 16.5 27.3 28 5.9 20.1 29.6 29
DeepFE-RCNN 164  40.2 54.7 8 103 314 44.5 13
RVR 12.1 278 47.8 11 12.7  33.1 449 12.5
MNLM-AlexNet 14.8 392 50.9 10 11.8  34.0 46.3 13
MNLM-VggNet 23.0 50.7 62.9 5 16.8 42.0 56.5 8
NIC 17.0  56.0 - 7 170 57.0 - 7
LRCN 140 349 47.0 11 - - - -
DeepVS 222 482 614 4.8 152 37.7 50.5 9.2
" Ours-m-RNN-AlexNet | 184 ~ 40.2 ~ 509  ~ 10 [ 126 312 415 16
Ours-m-RNN-VggNet | 354 63.8  73.7 3 22.8 50.7 63.1 5
MS COCO
Random 0.1 0.6 1.1 631 0.1 0.5 1.0 500
DeepVS-RCNN 294 620 75.9 2.5 209 52.8 69.2 4
" Ours-m-RNN-VggNet | 410  73.0 835 2 [290 422 710 3

Table 4: Results of R@K and median rank (Med r) for Flickr30K dataset and MS COCO dataset.

Flickr30K MS COCO

PPL B-1 B-2 B-3 B4 |PPL B-1 B-2 B-3 B4
RVR - - - - 0.13 - - - - 0.19
DeepVS-AlexNet - 047 021 009 - - 0.53 0.28 0.15 -
DeepVS-VggNet 21.20 050 030 0.15 - |19.64 057 037 0.19 -
NIC - 0.66 - - - - 0.67 - - -
LRCN - 0.59 039 0.25 0.16 - 0.63 0.44 031 0.21
DMSM - - - - - - - - - 021

“Ours-m-RNN-AlexNet | 35.11° 0.54 036 023 0.5 - - -~ - -~

Ours-m-RNN-VggNet | 20.72 0.60 0.41 0.28 0.19 | 13.60 0.67 0.49 0.35 0.25

Table 5: Results of generated sentences on the Flickr 30K dataset and MS COCO dataset.

Our m-RNN  MNLM NIC LRCN RVR  DeepVS
RNN Dim. 256 300 512 1000 (x4) 100  300-600
LSTM No Yes Yes Yes No No

Table 6: Properties of the recurrent layers for the five very recent methods. LRCN has a stack of
four 1000 dimensional LSTM layers. We achieves state-of-the-art performance using a relatively
small dimensional recurrent layer. LSTM (Hochreiter & Schmidhuber (1997)) can be treated as a
sophisticated version of the RNN.

7.5 RESULTS ON FLICKR30K AND MS COCO

We compare our method with several state-of-the-art methods in these two recently released dataset
(Note that the last six methods appear very recently, we use the results reported in their papers):
DeViSE (Frome et al. (2013)), DeepFE (Karpathy et al. (2014)), MNLM (Kiros et al. (2014a)),
DMSM (Fang et al. (2014)), NIC (Vinyals et al. (2014)), LRCN (Donahue et al. (2014)), RVR
(Chen & Zitnick (2014)), and DeepVS (Karpathy & Fei-Fei (2014)). The results of the retrieval
tasks and the sentence generation task ’ are shown in Table 4 and Table 5 respectively. We also

summarize some of the properties of the recurrent layers adopted in the five very recent methods in
Table 6.

"We only select the word with maximum probability each time in the sentence generation process in Table
5 while many comparing methods (e.g. DMSM, NIC, LRCN) uses a beam search scheme that keeps the best K
candidates. The beam search scheme will lead to better performance in practice using the same model.
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B1 B2 B3 B4  CIDEr ROUGE.L METEOR
m-RNN-greedy-c5 | 0.668 0.488 0.342 0.239 0.729 0.489 0.221
m-RNN-greedy-c40 | 0.845 0.730 0.598 0.473 0.740 0.616 0.291
~m-RNN-beam-c5 | 0.680 0.506 0.369 0272 0.791 0499 0225
m-RNN-beam-c40 | 0.865 0.760 0.641 0.529 0.789 0.640 0.304

Table 7: Results of the MS COCO test set evaluated by MS COCO evaluation server

Our method with VggNet image representation (Simonyan & Zisserman (2014)) outperforms the
state-of-the-art methods, including the very recently released methods, in almost all the evaluation
metrics. Note that the dimension of the recurrent layer of our model is relatively small compared
to the competing methods. It shows the advantage and efficiency of our method that directly inputs
the visual information to the multimodal layer instead of storing it in the recurrent layer. The m-
RNN model with VggNet performs better than that with AlexNet, which indicates the importance
of strong image representations in this task. 71% of the generated sentences for MS COCO datasets
are novel (i.e. different from training sentences).

We also validate our method on the test set of MS COCO by their evaluation server (Chen et al.
(2015)). The results are shown in Table 7. We evaluate our model with greedy inference (select
the word with the maximum probability each time) as well as with the beam search inference. “-
c5” represents results using 5 reference sentences and “-c40” represents results using 40 reference
sentences.

To further validate the importance of different components of the m-RNN model, we train sev-
eral variants of the original m-RNN model and compare their performance. In particular, we show
that the two-layer word embedding system outperforms the single-layer version and the strategy of
directly inputting the visual information to the multimodal layer substantially improves the perfor-
mance (about 5% for B-1). Due to the limited space, we put the details of these experiments in
Section 9.1 in the supplementary material after the main paper.

8 CONCLUSION

We propose a multimodal Recurrent Neural Network (m-RNN) framework that performs at the
state-of-the-art in three tasks: sentence generation, sentence retrieval given query image and image
retrieval given query sentence. The model consists of a deep RNN, a deep CNN and these two
sub-networks interact with each other in a multimodal layer. Our m-RNN is powerful of connecting
images and sentences and is flexible to incorporate more complex image representations and more
sophisticated language models.
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9 SUPPLEMENTARY MATERIAL

9.1 EFFECTIVENESS OF THE DIFFERENT COMPONENTS OF THE M-RNN MODEL
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Figure 3: Illustration of the seven variants of the m-RNN models.

B-1 B-2 B-3 B-4
m-RNN 0.600 0412 0.278 0.187
" m-RNN-NoEmbInput ~ | 0.592  0.408 0277 0.188
m-RNN-OneLayerEmb 0.594 0406 0274 0.184
m-RNN-EmbOnelnput 0.590 0.406 0274 0.185
"m-RNN-visinRnn ~~ [ 0.466 0267 0.157 0.101
m-RNN-visInRnn-both 0.546 0.333 0.191 0.120
m-RNN-visInRnn-both-shared | 0.478 0.279 0.171 0.110

Table 8: Performance comparison of different versions of m-RNN models on the Flickr30K dataset.
All the models adopt VggNet as the image representation. See Figure 3 for details of the models.

In this section, we compare different variants of our m-RNN model to show the effectiveness of the
two-layer word embedding and the strategy to input the visual information to the multimodal layer.

The word embedding system. Intuitively, the two word embedding layers capture high-level se-
mantic meanings of words more efficiently than the single layer word embedding. As an input to
the multimodal layer, it offers useful information for predicting the next word distribution.

To validate its efficiency, we train three different m-RNN networks: m-RNN-NoEmblInput, m-RNN-
OneLayerEmb, m-RNN-EmbOnelnput. They are illustrated in Figure 3. “m-RNN-NoEmblInput”
denotes the m-RNN model whose connection between the word embedding layer II and the mul-
timodal layer is cut off. Thus the multimodal layer has only two inputs: the recurrent layer and

13
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the image representation. “m-RNN-OneLayerEmb” denotes the m-RNN model whose two word
embedding layers are replaced by a single 256 dimensional word-embedding layer. There are much
more parameters of the word-embedding layers in the m-RNN-OneLayerEmb than those in the
original m-RNN (256 - M v.s. 128 - M + 128 - 256) if the dictionary size M is large. “m-RNN-
EmbOnelnput” denotes the m-RNN model whose connection between the word embedding layer 11
and the multimodal layer is replaced by the connection between the word embedding layer I and the
multimodal layer. The performance comparisons are shown in Table 8.

Table 8 shows that the original m-RNN model with the two word embedding layers and the con-
nection between word embedding layer II and multimodal layer performs the best. It verifies the
effectiveness of the two word embedding layers.

How to connect the vision and the language part of the model. We train three variants of m-RNN
models where the image representation is inputted into the recurrent layer: m-RNN-VisuallnRNN,
m-RNN-VisuallInRNN-both, and m-RNN-VisuallnRNN-Both-Shared. For m-RNN-VisualInRNN,
we only input the image representation to the word embedding layer II while for the later two mod-
els, we input the image representation to both the multimodal layer and word embedding layer II.

The weights of the two connections Vj(l), VI(Q) are shared for m-RNN-VisualInRNN-Both-Shared.
Please see details of these models in Figure 3. Table 8 shows that the original m-RNN model
performs much better than these models, indicating that it is effective to directly input the visual
information to the multimodal layer.

In practice, we find that it is harder to train these variants than to train the original m-RNN model
and we have to keep the learning rate very small to avoid the exploding gradient problem. Increasing
the dimension of the recurrent layer or replacing RNN with LSTM (a sophisticated version of RNN
Hochreiter & Schmidhuber (1997)) might solve the problem. We will explore this issue in future
work.

9.2 ADDITIONAL RETRIEVAL PERFORMANCE COMPARISONS ON IAPR TC-12

For the retrieval results in this dataset, in addition to the R@K and Med r, we also adopt exactly
the same evaluation metrics as Kiros et al. (2014b) and plot the mean number of matches of the
retrieved groundtruth sentences or images with respect to the percentage of the retrieved sentences
or images for the testing set. For the sentence retrieval task, Kiros et al. (2014b) uses a shortlist of
100 images which are the nearest neighbors of the query image in the feature space. This shortlist
strategy makes the task harder because similar images might have similar descriptions and it is often
harder to find subtle differences among the sentences and pick the most suitable one.

The recall accuracy curves with respect to the percentage of retrieved images (sentence retrieval
task) or sentences (sentence retrieval task) are shown in Figure 4. The first method, bowdecaf, is a
strong image based bag-of-words baseline (Kiros et al. (2014b)). The second and the third models

=—©=— Ours-mRNN
0.9| ==B=— bow-decaf
=B MLBL-F-decaf|
=H— MLBL-B-decaf

=©— Ours-mRNN
0.91| === bow-decaf
=8 MLBL-F-decaf
=¥ MLBL-B-decal|

0.8 08
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0.6

0.5F

041

0.3F

I I I I I 0 i i i i i I I I I
0.01 0.02 0.05 0.1 0.25 0.5 1 0.00050.001 0.002 0.005 0.01 0.02 005 01 025 05 1

(a) Image to Text Curve (b) Text to Image Curve

Figure 4: Retrieval recall curve for (a). Sentence retrieval task (b). Image retrieval task on IAPR
TC-12 dataset. The behavior on the far left (i.e. top few retrievals) is most important.
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(Kiros et al. (2014b)) are all multimodal deep models. Our m-RNN model significantly outperforms
these three methods in this task.

9.3 THE CALCULATION OF BLEU SCORE

The BLEU score was proposed by Papineni et al. (2002) and was originally used as a evaluation
metric for machine translation. To calculate BLEU-N (i.e. B-N in the paper where N=1,2,3,4) score,
we first compute the modified n-gram precision (Papineni et al. (2002)), p,,. Then we compute the
geometric mean of p,, up to length N and multiply it by a brevity penalty BP:

BP = min(1,e!7%) ®)

B-N — BP - e~ Zn—1logpn ©)

where r is the length of the reference sentence and c is the length of the generated sentence. We
use the same strategy as Fang et al. (2014) where p,,, 7, and c are computed over the whole testing
corpus. When there are multiple reference sentences, the length of the reference that is closest
(longer or shorter) to the length of the candidate is used to compute r.



