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Abstract

In solving a system of n linear equations in d variables Ax = b, the condition number of the n, d
matrix A measures how much errors in the data b affect the solution x. Bounds of this type are
important in many inverse problems. An example is machine learning where the key task is to estimate
an underlying function from a set of measurements at random points in a high dimensional space and
where low sensitivity to error in the data is a requirement for good predictive performance. Here we
report the simple observation that when the columns of A are random vectors, the condition number of
A is highest, that is worse, when d = n, that is when the inverse of A exists. An overdetermined system
(n > d) and especially an underdetermined system (n < d), for which the pseudoinverse must be used
instead of the inverse, typically have significantly better, that is lower, condition numbers. Thus the
condition number of A plotted as function of d shows a double descent behavior with a peak at d = n.

This material is based upon work supported by the Center for Brains,
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In solving a system of n linear equations in d variables Ax = b, the condition
number of the n, d matrix A measures how much errors in the data b affect the
solution x. Bounds of this type are important in many inverse problems. An
example is machine learning where the key task is to estimate an underlying function
from a set of measurements at random points in a high dimensional space and where
low sensitivity to error in the data is a requirement for good predictive performance.
Here we report the simple observation that when the columns of A are random
vectors, the condition number of A is highest, that is worse, when d = n, that is
when the inverse of A exists. An overdetermined system (n > d) and especially an
underdetermined system (n < d), for which the pseudoinverse must be used instead
of the inverse, typically have significantly better, that is lower, condition numbers.
Thus the condition number of A plotted as function of d shows a double descent
behavior with a peak at d = n.

The concept of condition number was introduced by Turing in 1948 [1] and has since played
a key role in the theory of algorithms. The condition number of a function measures how much
the output value of the function can change for a small change in the input argument. The
condition number most commonly associated with Ax = b is defined as the ratio of the relative
error in x to the to the relative error in the data b. In terms of the l2 norm on x and b, this
leads to the following definition (see Box1) for the the condition number of A, denoted by
κ(A = ||A||||A†||, where ||A|| is the operator norm of the m,n matrix A is defined in terms of
the vector norm of Kn,Km as ||A|| = supx∈Kn,x 6=0

||Ax||
||x|| and A† is the pseudoinverse. It is easy

to see that κ(A) = σmax(A)
σmin(A) that is the ratio of the maximal and minimal singular values of A.

The plot in the Figure 1 can be easily checked by calling the function “cond” in MatLab.
The double descent pattern is apparently quite robust to choices of d and n, such that their ratio
γ = n

d is the same. The fact that the worse conditioning occurs when the inverse exists uniquely
(γ = 1) seems at first surprising. This observation is new, as far as we know, though it is so simple
that it must have been realized by many. The proof is also simple because of a relatively recent
characterization of the eigenvalues of random matrices [2]. In fact, consider the n, d random
matrix A. We characterize its condition number by using the Marchenko–Pastur law, which
describes the asymptotic behavior of singular values of large rectangular random matrices. We



assume that the entries of A are independent, identically distributed random variables with mean
0 and variance σ2. We consider the limit for n→∞ with n

d → γ. Marchenko–Pastur claims that
for γ < 1 the smallest and the largest singular values of 1

dAA
T are, respectively (1−√γ)2 and

(1 +√γ)2. For γ > 1 the largest and the smallest eigenvalues of 1
nA

TA are (1 +
√
γ−1)2 and

(1−
√
γ−1)2. When γ = 2, and the entries are i.i.d. sub-Gaussian, the maximal singular value is

concentrated around 2, but the minimal one is min{n−1, d−1}(max{
√
n−
√
d− 1,

√
d−
√
n− 1})2,

as was observed in [3].
For the system of linear equations Ax = b, the implication is that is better to have more

variables than data: the condition number associated with the minimum norm solution x = A†b
is usually much better – that is closer to 1 – than the condition number of a well-determined
system with n = d, if the matrix A is random.

There are interesting implications for machine learning. The most obvious is that kernel
methods (see Box4), which are a popular workhorse in machine learning, do not require regular-
ization in order to be well-conditioned, if the kernel matrices are based on high dimensional i.i.d
data, especially when γ < 1. This claim follows from very recent results on kernels. The simplest
form of the kernel matrix K(xj , xi) is K = XXT . One can think of the matrix K as given
by K(xj , xi) = Φ(xj)TΦ(xi) since K(x, y) =

∑∞
i λiφi(x)φi(y) because of Mercer theorem. We

consider random matrices whose entries are K(xTi xj) or K(||xi − xj ||2) with i.i.d. vectors xi in
Rp with normalized distribution. Assuming that f is sufficiently smooth and the distribution of
xi’s is sufficiently nice, El Karoui [4] showed that the spectral distributions of kernel dot-product
matrices K(xi, xj) = f(XXT ) behave as if f is linear in the Marchenko–Pastur limit. In fact, El
Karoui showed that under mild conditions, the kernel matrix is asymptotically equivalent to a
linear combination of XXT , the all-1’s matrix, and the identity, and hence the limiting spectrum
is Marcenko-Pastur. As a consequence, the claims about the condition number of a random
matrix A also apply to kernel matrices with random data, see Figure 2.

In addition, the behavior of the condition number of K† provides a – perhaps oversimplified
but clear – explanation for the double descent behavior of the test error by linear and kernel
interpolants, which has recently attracted much attention [5, 6, 7, 8, 9, 10, 11].

From the point of view of the foundations (see Box5) of learning theory, this observation
implies that complexity control is important not only in the “classical” regime of fixed hypothesis
space and n→∞ but also in the “modern” high dimensional regime of n

d →∞, in which the
minimum norm pseudoinverse plays a key role. In both cases, well-posedness that is existence,
uniqueness and especially stability of the solution, are the key requirement for predictivity.
Stability, defined as CVloo, reduces to the condition number of K† for kernel methods both in
the “classical” and in the “modern” regime. Stability is usually guranteed during optimization,
that is learning from examples, by complexity control under the form of vanishing regularization
(as in the definition of the pseudoinverse or as implicitely provided by iterative gradient descent
[12]).

It is quite possible that a similar argument may explain the behavior of overparametrized
deep neural networks. It has been shown recently [13, 14, 15] that with the exponential loss,
gradient descent induces a dynamics of the weight matrix for each layer of the network that
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Figure 1: Typical double descent of the condition number (y axis) of a random data matrix
distributed as N (0, 1): the condition number is worse when n = d, better if n > d (on the right
of n = d) and also better if n < d (on the left of n = d).
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Figure 2: Typical double descent of the condition number (y axis) of a radial basis function
kernel K(x, x′) = exp

(
− ||x−x

′||2
2σ2

)
built from a random data matrix distributed as N (0, 1): as

in the linear case, the condition number is worse when n = d, better if n > d (on the right of
n = d) and also better if n < d (on the left of n = d). The parameter σ was chosen to be 5.



converges, because of a hidden vanishing regularization term, to a minimum norm solution analog
to the pseudoinverse.
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Boxes

Box4: ERM and Kernel Machines

Consider “learning the function f from data S = (x1, y1;x2, y2, · · ·xn, yn) by computing

min
f∈BR

1
n

n∑
i=1

(f(xi)− yi)2. (1)

We assume that f(x) =
∑n

1=1 ciK(xi,x) and that f is in the ball BR of radius R in H (eg
‖f‖K ≤ R). Then H = IK(BR) is compact – where IK : HK ↪→ C(X) is the inclusion and C(X)
is the space of continuous functions with the sup norm [16]. In this case the minimizer of the
generalization error I[f ] is well-posed. Minimization of the empirical risk (Equation (1)) is also
well-posed: it provides a set of linear equations to compute the coefficients c of the solution f as

Kc = y (2)

where y = (y1, ..., yn) and (K)i,j = K(xi,xj). Notice that this last set of linear equations is
well-posed even without the constraint ||f ||1K ≤ R: if K is symmetric and positive definite and
the xi are distict the K−1 exists and ||f ||2K is automatically bounded, with a bound that increase
with n. For any fixed n the condition number of K is finite. A regularized form of ERM is

min
f∈H

1
n

n∑
i=1

(f(xi)− yi)2 + λ‖f‖2K , (3)

which gives the following set of equations for c (with λ ≥ 0)

(K + nλI)c = y, (4)

which for λ = 0 reduces to Equation (2). In both cases, stability of the empirical risk minimizer
provided by Equation (3) can be characterized using the classical notion of condition number of
the problem. The change in the solution f due to a variation in the data y can be bounded as
‖∆f‖
‖f‖ ≤ ‖K + nλI‖

∥∥∥(K + nλI)−1
∥∥∥‖∆y‖
‖y‖ where the condition number ‖K + nλI‖

∥∥(K + nλI)−1∥∥
is controlled by nλ. A large value of nλ gives condition numbers close to 1, whereas ill-conditioning
may result if λ = 0 and the ratio of the largest to the smallest eigenvalue of K is large. Though
this is the classical argument, it is now clear (because of recent results such as El Karoui [4])
that random K matrices are typically well-conditioned even for λ = 0 as described in Box 3. In
other words, for i.i.d high-dimensional data,

‖∆f‖
‖f‖

≤ ‖K‖
∥∥∥(K)†

∥∥∥‖∆y‖
‖y‖ , (5)

and the condition number κ(K) = ‖KI‖
∥∥∥(KI)†

∥∥∥ is close to 1, especially for γ << 1 (see Box2).



Box5: Classical Learning Theory

In the classical setting, a key property of a learning algorithm is generalization: the empirical
error must converge to the expected error when the number of examples n increases to infinity,
while the class of functions H, called the hypothesis space, is kept fixed. An algorithm that
guarantees good generalization will predict well, if its empirical error on the training set is
small. Empirical risk minimization (ERM) on H represents perhaps the most natural class of
learning algorithms: the algorithm selects a funcion f ∈ H that minimizes the empirical error –
as measured on the training set.
One of the main achievements of the classical theory was a complete characterization of the
necessary and sufficient conditions for generalization of ERM, and for its consistency (consistency
requires asymptotic convergence of the expected risk to the minimum risk achievable by functions
in H; for ERM generalization is equivalent to asymptotic consistency). It turns out that
consistency of ERM is equivalent to a precise property of the hypothesis space: H has to be a
uniform Glivenko-Cantelli (uGC) class of functions.
Later work showed that an apparently separate requirement – the well-posedness of ERM – is in
fact equivalent to consistency of ERM. Well-posedness usually means existence, uniqueness and
stability of the solution. The critical condition is stability of the solution. Stability is equivalent
to some notion of continuity of the learning map (induced by ERM) that maps training sets into
the space of solutions, eg L : Zn → H. In particular, it was proved [17, 18] that CVloo stability
guarantees generalization and in the case of ERM is in fact equivalent to consistency.
We recall the definition of leave-one-out cross-validation (in short, CVloo) stability:

∀i ∈ {1, . . . , n} PS {|V (fS , zi)− V (fSi , zi)| ≤ βCV } ≥ 1− δCV . (6)

CVloo stability measures the difference between the errors at a point zi when it is in the training
set of one of the predictors wrt whn is not. The definition of CVloo was introduced to deal with
general situations in which H may not have a norm. It is much simpler in the case in which H is a
RKHS. Then a condition number can be defined and then a good condition number implies good
CVloo stability. Both definitions capture the basic idea of stability of a well-posed problem: the
function “learned” from a training set should, with high probability, change little in its pointwise
predictions for a small change in the training set, such as deletion of one of the examples.
Notice that we can rewrite the definition as CV r

loo = 1+E(V (fSi ,zi))
1+E(V (fS ,zi)) (and require it to converge

to 1 for n→∞ to ensure generalization in the classical regime). This alternative definition of
CVloo stability makes it almost equivalent to the condition number, when this exists.
In the modern regime, in which both n and d (or a property of H equivalent to d) grow to
infinity, generalization is not expected. The classical approach – of asymptotic generalization
and then consistency – cannot be used because there is no fixed hypothesis space. However, the
requirement of well-posedness and stability remains. When it exists meaningfully, the condition
number is then the obvious definition of stability for the “modern” regime. It is an obvious
notion of stability and furthermore it provides a bound on the test error: CV r

loo close to 1 bounds
the test error wrt to perturbations, including deletion or substitution of one example.
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