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Abstract 
 

The goal in this work is to model the process of ‘full interpretation’ of object images, which is the ability to 
identify and localize all semantic features and parts that are recognized by human observers. The task is 
approached by dividing the interpretation of the complete object to the interpretation of multiple reduced but 
interpretable local regions. In such reduced regions, interpretation is simpler, since the number of semantic 
components is small, and the variability of possible configurations is low.  
 We model the interpretation process by identifying primitive components and relations that play a 
useful role in local interpretation by humans. To identify useful components and relations used in the 
interpretation process, we consider the interpretation of ‘minimal configurations’:  these are reduced local 
regions, which are minimal in the sense that further reduction renders them unrecognizable and 
uninterpretable. We show that such minimal interpretable images have useful properties, which we use to 
identify informative features and relations used for full interpretation. We describe our interpretation model, 
and show results of detailed interpretations of minimal configurations, produced automatically by the model. 
Finally, we discuss implications of full interpretation to difficult visual tasks, such as recognizing human 
activities or interactions, which are beyond the scope of current models of visual recognition. 
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Abstract: 

The goal in this work is to model the process of ‘full interpretation’ of object images, 

which is the ability to identify and localize all semantic features and parts that are 

recognized by human observers. The task is approached by dividing the interpretation of 

the complete object to the interpretation of multiple reduced but interpretable local 

regions. In such reduced regions, interpretation is simpler, since the number of semantic 

components is small, and the variability of possible configurations is low.  

We model the interpretation process by identifying primitive components and 

relations that play a useful role in local interpretation by humans. To identify useful 

components and relations used in the interpretation process, we consider the 

interpretation of ‘minimal configurations’:  these are reduced local regions, which are 

minimal in the sense that further reduction renders them unrecognizable and 

uninterpretable. We show that such minimal interpretable images have useful properties, 

which we use to identify informative features and relations used for full interpretation. 

We describe our interpretation model, and show results of detailed interpretations of 

minimal configurations, produced automatically by the model. Finally, we discuss 

implications of full interpretation to difficult visual tasks, such as recognizing human 

activities or interactions, which are beyond the scope of current models of visual 

recognition. 
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1. Introduction 

Humans can recognize in images not only objects (e.g., a person) and their major 

parts (e.g., head, torso, limbs), but also multiple semantic components and structures at a 

fine level of detail (e.g., shirt, collar, zipper, pocket, cuffs etc.), as in Fig. 1A. Identifying 

detailed components of the objects in the image is an essential part of the visual process, 

contributing to the understanding of the surrounding scene and its potential meaning to 

the viewer (Sec. 6.1). Although this capacity is of fundamental importance in human 

perception and cognition, current understanding of the processes involved in detailed 

image interpretation is limited.  

 From the modeling perceptive, existing models cannot deal well with the full 

problem of detailed image interpretation, and, as discussed below, the limitations are of 

fundamental nature. Computational models of object recognition and categorization have 

made significant advances in recent years, demonstrating consistently improving results 

in recognizing thousands of natural object categories in complex natural scenes (Sec. 2). 

However, existing models cannot provide a detailed interpretation of a scene’s 

components in a way that will approximate human perception. For example, for a given 

image such as Fig. 1A, existing models can correctly decide if the image contains a 

person (e.g., Csurka et al., 2004; Simonyan & Zisserman, 2015), and can locate a 

bounding box around the body (e.g., Dalal & Triggs, 2005; Girshick et al., 2014). At a 

more refined level, current algorithms can provide an approximate segmentation of the 

body figure (e.g., Long et al., 2015), and can locate image region containing the main 

body parts, such as the torso region, the face, or the legs (e.g.,	Chen et. al., 2014; Vedaldi 

et al., 2014), or keypoints at the joints (e.g., Chen & Yuille, 2014; Wei. et al., 2016). 

However, existing computational models cannot achieve the accuracy and richness of the 

local interpretation of image components perceived by a human observer (e.g., as in Fig. 

1B). 

To clarify the terminology, by the term ‘visual interpretation’ we refer to a mapping 

between images and a non-visual domain, such as the domain of objects and object 

categories, object parts, and other physical entities, which is the semantic domain. For 

instance, within a face image, a particular contour may correspond to, say, the mouth’s 

upper lip. The contour is an image component, the upper-lip is a semantic component, 
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and the interpretation process maps between the two. The ultimate goal of a ‘full 

interpretation’ model is to identify all the semantic components that human observers can 

identify in an image. 	

1.1. Local image interpretation  

Producing a detailed interpretation of an object's image is a challenging task, 

since a full object may contain a large number of identifiable components in highly 

variable configurations. We approach this task by decomposing the full object or scene 

image into smaller, local, regions containing recognizable object components. There are 

several advantages to perform the interpretation first in local regions, and then combine 

the results. First, as exemplified in Fig. 1B, in such local regions the task of full 

interpretation is still possible (Ullman et al., 2016), but it becomes more tractable, since 

the number of semantic recognizable components is highly reduced. As will be shown 

(Sec. 5), reducing the number of components plays a key factor in effective 

interpretation. At the same time, when the interpretation region becomes too limited, 

observers can no longer interpret or even identify its content, as illustrated in Fig. 1C 

(Ullman et al., 2016). The goal of the model is therefore to apply the interpretation 

Figure 1. (A). Humans can identify a large number of semantic features and parts in an object image.  In the image 
of a walking person, features like the suit’s pocket, tie’s knot, left shoe, or the right ear, are easily identified by humans, 
among many others. (B). A detailed interpretation of a small image regions, as identified by human observers.  In 
small local regions, the number of semantic components is significantly smaller than in full images, and variability is 
reduced. (C). When the local region becomes too limited, human observers can no longer recognize and interpret its 
content when presented on its own (Ullman et al., 2016). 
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process to local regions that are small, yet interpretable on their own by human observers. 

A second advantage of applying the interpretation locally is that variability of 

configurations taken from the same object class, but limited to local regions, is often 

significantly lower compared with complete object images. For example, the full horse 

images in Fig. 2 (taken from the ‘horse’ category in ImageNet, Deng et al., 2012), a 

common benchmark for evaluating object recognition models) are quite different from 

each other, but can become significantly more similar at the level of local regions. 

Finally, as will be discussed in the next section, the image of a single object typically 

contains multiple, partially overlapping regions, where each one can be interpreted on its 

own. Due to this redundancy, performing the interpretation locally and then combining 

the results increases the robustness of the full process to local occlusions and distortions.  

1.2. Minimal configurations  

 In performing local interpretation, how should an object image be divided into 

local regions? The approach we take in this study is to develop and test the interpretation 

model on regions that can be interpreted on their own by human observers, but at the 

same time are as limited as possible. We used for this purpose a set of local recognizable 

images derived by a recent study of minimal recognizable images (Ullman et al., 2016). 

We briefly describe below how these images were obtained, and then explain the reasons 

for using these local images in developing and testing the interpretation model.  

 A ‘minimal configuration’ (also termed Minimal Recognizable Configuration, or 

MIRC) is defined as an image patch that can be reliably recognized by human observers, 

Figure 2. Complete horse images taken from ImageNet object recognition benchmark (Deng et al., 2012), and a small 
recognizable region that is interpretable (similar to Fig. 4A), next to each complete horse image illustrating the reduced 
variability in small recognizable region vs. the complete object image.  
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which is minimal in the sense that further reduction by either size or resolution makes the 

patch unrecognizable. To discover minimal configurations, an image patch was presented 

to observers: if it was recognizable, 5 descendants were generated by either cropping at 

one corner, or reducing resolution of the original patch. A recognizable patch is identified 

as a ‘minimal configuration’ if none of its 5 descendants reach recognition criterion 

(50%). A search started with images from different object classes (Fig. 3A), and 

identified their minimal configurations over all possible positions, sizes and resolutions.  

Each subject saw a single patch only from each original image, requiring over 15,000 

subjects. Testing was therefore done online using Amazon’s Mechanical Turk platform 

(MTurk), combined with laboratory controls. At the end of the search, each object class 

was covered by multiple minimal configurations at different positions and sizes. Minimal 

configurations were on average about 15 image samples in size; some contained local 

object parts, others were more global views at a reduced resolution. Examples of 

identified minimal configurations are shown in the top row of Fig. 3B.  

 A notable aspect of the results for the purpose of the current study, is the presence 

of a sharp transition for almost all minimal configurations from a recognizable to a non-

recognizable minimal image: a surprisingly small change at the minimal-configuration 

level can make it unrecognizable. Examples are shown in Fig. 3B, bottom row, together 

with their respective recognition rates. The small changes between minimal vs. sub-

minimal configurations that cause large drop in recognition are used below to identify 

features and relations used in the interpretation process. It was also found that the large 
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Figure 3. Minimal configurations adapted from Ullman et al. (2016). (A). The search for minimal images started 
from different object images (8 shown here), each composed of 50x50 image samples. (B). Top row: minimal images 
discovered by the search. Bottom row:  sub-minimal configurations, which are slightly reduced versions of the 
images on top. Numbers below each image show correct recognition rate by 30 human observers. Small changes to 
the local image at the minimal configuration level can have large effect on recognition. A data set of such pairs is 
used below for modeling the interpretation of local regions.  
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gap in human recognition rate between minimal and sub-minimal images is not 

reproduced by current computational models of human object recognition (Serre et al., 

2007) and recent deep network models (Krizhevsky et al., 2012; Simonyan & Zisserman, 

2015). As shown below (Sec. 5.2), the full interpretation model can provide at least a 

partial explanation to this sharp drop in recognition. 

1.3. Recognition and interpretation  

 With respect to local interpretation, recognition tests of minimal images showed 

that although the minimal images are ‘atomic’ in the sense that their partial images 

become unrecognizable, humans can consistently recognize multiple semantic features 

and parts within them. It was noted (Ullman et al., 2016) that recognition and 

interpretation of minimal images go hand in hand in the sense that under the tested 

conditions (unlimited viewing time), when subjects correctly recognized a minimal 

image, they were also able to provide an internal interpretation of multiple internal 

components.  Since in minimal images all the available information is, by definition, 

crucial for recognition, we propose in the model below that all the interpreted 

components of minimal images also contribute to their recognition. As described further 

below (Sec. 4.3), in the model, the full interpretation process contributes to accurate 

recognition, since a potential false detection can be rejected if it does not have the 

expected internal interpretation.  

 For the purpose of modeling human visual interpretation, our initial focus is on 

the interpretation of minimal images, for the following reasons. First, they provide a 

useful test set for the model: since they are interpretable by humans, a theory of human 

image interpretation should be applicable to such configurations. Second, we use minimal 

and sub-minimal pairs with a large gap in recognizability and interpretability as a source 

for inferring useful features for the interpretation of minimal images (Sec. 4). Before 

describing the model, we briefly describe past work related to visual object interpretation.  

 

2. Related work on visual object interpretation 

Visual recognition can take place at different levels of details, from full objects and their 

main parts, to fine details of objects' structure. In modeling human visual perception, as 

well as in computer vision, much of the work to date has focused on relatively coarse 
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levels, rather than full object interpretation considered here. For example, in the 

Recognition by Components (RBC) model of human object categorization (Biederman, 

1987), objects are represented in terms of a small number of 3-D major parts. A leading 

biological model on the human object recognition system, the HMAX model 

(Riesenhuber & Poggio, 1999; Serre et al., 2007) produces as its output general category 

labels of full objects, rather than a detailed interpretation. 

 A model for human image interpretation (Epshtein et al., 2008) was shown to 

provide partial image interpretation by a combination of bottom-up with top-down 

processing. The model uses a hierarchy of informative image patches to represent object 

parts at multiple levels. The current model also uses a combination of bottom-up and top-

down processing, but it provides a significantly richer interpretation, and based on 

computational and psychophysical considerations, it uses an extended set of elements and 

relations. A preliminary version of the model was described in Ben-Yosef et al. (2015). 

The current model extends the early version in the use of minimal images (rather than 

local image regions), in testing on multiple classes, and in comparisons with human 

vision.  

 In computer vision, there has been rapid progress in different aspects of object 

and scene recognition, based primarily on deep convolutional neural networks and related 

methods (Hinton, 2007; LeCun et al., 2015; Yamins et al., 2014; Krizhevsky et al., 2012; 

Simonyan & Zisserman, 2015; He et al., 2016). Such methods have also been adapted 

successfully for image segmentation, namely the delineation of image regions belonging 

to different objects. For example, recent algorithms (e.g., Long et al., 2015; Hariharan et 

al., 2015; Dai et al., 2016) can identify image regions belonging to different objects in the 

PASCAL (2012) or CoCo benchmarks (2015); however, they do not locate the precise 

object boundaries, and do not identify the object’s semantic components.  

 A number of studies have begun to address the problem of a fuller object 

interpretation, including methods for part-based detectors, object parsing, and methods 

for so-called fine-grained recognition. Recent examples include modeling objects by their 

main parts, for example an airplane’s nose, tail, or wing (Vedaldi et al., 2014), or 

modeling human-body parts such as the head, shoulder, elbow, or wrist (e.g., 
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Felzenszwalb et al., 2010; Girshick et al., 2015). Related models provide segmentation at 

the level of object parts rather than complete objects (applied e.g. to animal body parts 

such as head, leg, torso, or tail, e.g., Azizpour & Laptev, 2012; Chen et al., 2014). 

Another form of interpretation has been the detection of key-points within an object, such 

as key-points of the human body (e.g., Andriluka et al., 2014; Chen & Yuille, 2014; 

Tompson et al., 2015) and within the human face (e.g., Yang et al., 2015). 

 The goal of interpretation models, such as those above, is to produce the semantic 

structure in an image region. The model is usually given during learning a set of training 

images together with their interpretation, i.e., a set of semantic elements within each 

image, and the goal of the model is to identify similar elements in a novel image. In a 

correct interpretation, the internal components are expected to be arranged in certain 

consistent configurations, which are often characterized in the model by a set of spatial 

relations between components. The task of producing the semantic interpretation can 

therefore be naturally approached in terms of locating within an image region a set of 

elements (primitives) arranged in a configuration that satisfies relevant relations. The 

term ‘relations’ also includes properties of single elements (e.g., the curvature, location, 

or size of a contour), which can be considered as unary relations.  

 A number of algorithms have been developed and used in the field of machine 

vision under the general term ‘structured prediction’ to deal with problems related to the 

learning and discovery of image structures, such as Conditional Random Field (Lafferty 

et al., 2001), or Structured Support Vector Machine (Joachims et al., 2008). These 

models are given the set of possible relations to use, and then learn the specific 

parameters from examples. In terms of properties and relations, in most visual models 

that deal with image structures, such as the ones above, part properties (unary relations) 

are limited to local, deep CNN-based features, and binary relations are limited to relative 

displacements of components (parts or keypoints). As elaborated below, results of the 

present modeling show that the capacity to provide full interpretations requires the use of 

features and relations, which go beyond those used in most current recognition models.  
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3. Model description 

Our interpretation scheme has two main components: in the learning stage, it learns the 

semantic structure of an image region in a supervised manner, and in the interpretation 

stage, it identifies the learned structure in similar image regions. These two stages are 

described in the rest of this section.  

3.1 Learning setup 

 The learning stage derives the semantic structure of an object region based on 

positive examples coming from class images, and negative examples derived by the 

system from similar but non-class images. We first describe how these training examples 

are obtained, and then how the region’s semantic structure is learned from them.  

 Positive examples are supplied manually during a preparation stage as a set of 

image regions with their interpretation, namely, the semantic elements that should be 

identified and localized.  Since the goal is to model humans' ability to obtain a detailed 

local interpretation, the target set of semantic primitives to identify was collected for 

different minimal images using human observers. The semantic features to be identified 

by the model, e.g. 'ear', 'eye', 'tie knot' etc., were features that human observers label 

consistently in minimal images, verified using a Mechanical Turk procedure (see 

examples in Fig. 4, top row, and Appendix A for procedure details). The average number 

of consistently identified elements within a single minimal configuration was 8. To 

Figure 4. Human interpretation of minimal configurations. (Top row). All components that were identified consistently by 
human observers (Appendix A). (Bottom row). In the interpretation model the components are represented by three types 
of primitives: points, contours, regions, together with relations between them. For each column, the identified components 
on the top panel are plotted in different colors on the bottom panel, and by either a point, a contour, or a region (an 
outlined square).  
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capture the recognized internal components fully as perceived by humans, the primitive 

elements in the model were divided into three types: two-dimensional (2-D) regions, 1-D 

contours, and points (0-D). Example sets of primitives for modeling the interpretation of 

minimal images are shown in Fig. 4, bottom row. For instance, a point-type primitive 

may describe the eye in the horse head model (Fig. 4A), and a contour-type primitive 

describes borders such as the borders of the tie in the man-in-suit (Fig. 4A). Larger 

semantic features marked by observers such as the ship’s ‘bow’ region or the tie’s ‘knot’, 

were marked as region primitives (outlined squares in Fig. 4, bottom row). The three 

types of primitives are also supported by psychophysical and physiological studies (e.g., 

Attenive, 1954; Pasupathy & Connor, 1999). 

 Given the semantic elements identified by humans in a minimal image of class C 

(e.g., a horse-head), we prepared a set of annotated images, in which the semantic 

components (denoted 𝑃"  below) were marked manually (with automatic refinement). 

Examples for such annotations are shown in Fig. 5A. The unsupervised learning of 

components and relations are considered briefly in the final discussion (Sec. 6.2). 

 Having a set of interpretation examples, the learning process next searches 

automatically for negative interpretation examples – these are non-class images that are 

potentially confusable with class images. The procedure for identifying so-called ‘hard 

negatives’ (e.g., Felzenszwalb et al., 2010; Azizpour et al., 2012; Chen et al., 2014) starts 

Figure 5. Stages in the interpretation scheme, with horse-head as an example. (A). Point, contour, and region 
primitives that represent the identified parts (cf. Fig. 4) are annotated in training examples (several shown here), 
and are used to learn an interpretation model, which combines the primitives with relations between them. (B). 
Results of the interpretation model for 3 novel examples of the horse head minimal configuration. 
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from random non-class examples and then iterates over two steps: finding non-class 

examples with high interpretation score, then adding them to the training set and re-

training the model.  

3.2 Learning the semantic structure:  

For a minimal configuration C, we define its semantic structure 𝑆"  as a pair of 

two sets: the set of semantic components 𝑃"  mentioned in Sec. 3.1 (also called below the 

‘primitives’), and a set of relations between primitives, denoted by 𝑅" , namely 

𝑆" =	< 𝑃", 𝑅" >. 

We include properties of a single primitive as a relation with a single argument. A basic 

problem at this stage is therefore to learn a set of relations that are useful for identifying 

configurations, namely, which appear in the positive class examples, and distinguish 

them from configurations found in the similar but non-class negative examples. The 

relevant relations for a given image are selected automatically during learning from an 

initial set (termed ‘relations library’ below) of potentially informative and useful relations 

to compute (see Sec. 5 on how this set was obtained). For instance, whether the relation 

'containment' between pairs of primitives should be included in 𝑅" , all potential pairs of 

primitives are examined, using the positive and negative examples, to test if one primitive 

is consistently contained within the other. (See Appendix. B.1 for how the contribution of 

a relation to the final interpretation was measured.) Each of the relations used in the 

interpretation scheme is given an index, e.g. the relation ‘containment’ may have the 

index ‘4’. Following selection, the set of all informative relations identified in a given 

minimal image C are represented by the vector 𝑅" . Each element in 𝑅"  specifies a 

relation, and its relevant components. For example, the 3rd component of 𝑅"  (i.e., 𝑅"(+)) 

could be the triplet (4, 5, 7). This triplet means that relation 4, which is ‘containment’, 

holds between components 5 and 7 in the local image model, specifying that component 

5 in the local model should be contained inside component 7. Similarly, the element in 

position 4 in 𝑅"  (i.e., 𝑅"(-)) can be a ‘straightness’ (unary) relation of primitive index 2, 

etc. Relations in our model could be either binary, e.g., ‘containment’, or represented by a 
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scalar, e.g., the property ‘location’, specifying the location of a component within the 

local image. 

A detailed description of the learning model and procedure based on ‘structured 

learning’ framework (e.g. Shalev-Shwarts & Ben-David, 2014) is given in Appendix B. 

For a novel image, the vector representation 𝑅"  of the image structure is derived as 

described in the next section, and then used for final interpretation decision. 

3.3. Interpretation of a novel image 

 In this section we assume that a local image region has been identified as a likely 

candidate of a particular object or object part, and the current task is to produce an 

internal interpretation of the candidate region, and make a final decision about its 

identity. More details of the algorithm are given in Appendix B, and we also describe 

later (Sec. 6.3) how the initial detection and full interpretation are integrated together in a 

combined scheme of a bottom-up stage identifying likely candidates (e.g. by a DNN 

classifier trained for the task), followed by a top-down interpretation and validation stage.  

Relations 
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configurations: 

Output:	The	most	
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Figure 6: An overview of the interpretation process of a novel image. From left to right, Input image. 
Detected candidates: of the primitive components, examples for 3 candidates of each primitive are shown. 
Configurations: examples of possible configurations of detected primitives (denoted by 𝜋 in Appendix B); 
the one at the bottom is the optimal one. Computing relations: compute the relations in 𝑅𝐶 for each candidate 
configuration (the vector  𝜙𝑆(𝐼, 𝜋) in Appendix B). A compatibility score: a scoring function (𝑔(𝜙6(𝐼, 𝜋); 𝑤) 
in Appendix B) is computed for each configuration. The configuration with highest score is returned as final 
interpretation. 
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The interpretation process starts with a candidate region and its proposed 

classification (e.g., that it contains a horse-head). The process then uses the learned 

model of the region’s structure to identify within the region a structure that best 

approximates the learned one. This process proceeds in two main stages. The first is a 

search for local primitives, namely points, contours, and regions in the image, to serve as 

potential candidates for different components of the expected structure. The second stage 

searches for a configuration of the components that best matches the learned structure.  

To match a given image configuration to the learned structure, we compute the 

relations in 𝑅"  for this configuration, and then use a compatibility scoring function based 

on a random forest classifier (Breiman, 2001, Appendix B), which produces a number 

that evaluates the degree to which the configuration is a correct interpretation of the input 

image.  The interpretation scheme finally selects the highest-scoring configuration. A 

search among multiple configurations is feasible due to the small number of primitives in 

the local region. This overall process is illustrated in Fig. 6. A detailed description of the 

scoring procedure and the optimization part (i.e., finding the most compatible 

configuration) is given in Appendix B. 

4. Useful relations for interpretation 

 Producing an interpretation of an image region requires the localization of its 

participating components, and verifying their correct configuration. The model verifies 

the structure using inter-elements relations, and a natural question is therefore which 

relations are useful in modeling local semantic structures. The visual system is known to 

be sensitive to a range of spatial properties and relations between components such as 

curvature, straightness, proximity, relative displacement, collinearity, inclusion, 

bisection, and others, which have been studied both perceptually and physiologically (see 

review in Sec. 4.1 below). It is unknown, however, which relations play a significant role 

in the task of visual interpretation. In this section we describe the methods we used to 

identify informative relations for interpretation, which were then included in the set of 

interpretation relations. 
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 In contrast with the richness of relations that can be efficiently perceived by the 

visual system (Sec. 4.1), the majority of models for image recognition and interpretation 

have been based on a limited number of basic relations. Recognition models based on 

deep networks obtain high performance in basic categorization, but when the task 

requires a more detailed interpretation, e.g. identifying keypoints in human pose 

estimation, performance improves by explicitly incorporating inter-element relations, in 

particular relative displacement and orientations, using e.g. CRF models (Chen & Yuille, 

2014; Wei et al., 2016). We next examined the set of relations which are informative for 

the full interpretation of local images.  

 The availability of minimal images allowed us to examine whether basic relations 

used in previous schemes are sufficient for producing an accurate interpretation by the 

interpretation model. Minimal configurations are by construction non-redundant visual 

patterns, and therefore their recognition and interpretation depend on the effective use of 

all the available visual information. It consequently becomes of interest to examine the 

performance of a model that uses a limited set of relations when applied to the 

interpretation of minimal images. We therefore constructed a version of the interpretation 

scheme, where the set of relations was limited to displacement and proximity relations. 

Performance for this version proved insufficient compared with human interpretation (see 

more details in Sec. 5). This limitation motivated the search for additional informative 

relations, which were shown to improve the interpretation of minimal images. It is worth 

noting that since minimal images contain small sets of components, it becomes more 

feasible to use in the model inter-element relations that are more complex and more 

computationally demanding than used in past models.   

 We describe in Sections 4.1-4.4 below the process of identifying informative 

relations for the interpretation process. Previous psychophysical and physiological studies 

have proposed a number of relations that the visual system is sensitive to. These provided 

an initial set of candidate relations, and each relation was evaluated by measuring its 

contribution to the interpretation model applied to a test set of minimal configurations, 

combined with sub-minimal configurations (Sec. 4.2) and hard-negative examples (Sec. 

4.3). We finally describe the relations that were found to be informative for learning 



15	
	

interpretation. We also consider (Sec. 6.2) how a more complete set of informative 

interpretation relations could be learned and refined over time.   

4.1 Relevant visual relations in past literature  

 The study of relations between elements in the visual field dates back at least to 

the Gestalt school and its principles of perceptual organization (Wertheimer, 1923). 

These principles were based on relations that group visual elements together to be 

perceived as coherent units, and included proximity, similarity, connectivity, symmetry, 

and continuity between dots, contours, or regions. Psychophysical experiments since 

have shown that the human visual system is effortlessly sensitive to a range of spatial 

properties and relations between visual elements. Such relations include: parallelism and 

symmetry (e.g., Feldman, 2007; Machilsen et al., 2009), curvature and convexity (e.g., 

Foster et al., 1993), connectedness of blobs (e.g., Palmer & Rock, 1994), and 

connectedness of contours (e.g., Jolicoeur et al., 1986), continuity of contours (e.g., 

Kanizsa, 1979), co-linearity (e.g., Field et al., 1993) and co-circularity (e.g., Parent & 

Zucker, 1989) of contours, relative length of lines and contours (e.g., Saarela et al., 

2009), bisection (e.g., Westheimer et al., 2001), and inclusion (Ullman, 1984).  

 For many of these relations, it remains unclear whether they are being formed at 

early stages of visual perception in a bottom-up manner (e.g., Kanizsa, 1979; Field et al., 

1993; Parent & Zucker, 1989) or at later stages, applies in a top-down manner to early 

visual representations (e.g., Ullman, 1984; Jolicoeur et al., 1986; Roelfsema et al., 1998). 

It is also still unclear which of the relations perceived effortlessly by humans play also a 

direct role in recognition and interpretation. The computational test described below 

evaluated directly the contribution of different relations to the interpretation of minimal 

image. To search for informative relations for interpretation, we started with a list of 

visual relations identified in past studies listed above, called the ‘candidate relations’, and 

tested their contribution to the interpretation process applied to minimal and sub-minimal 

images and hard-negative examples, as discussed next (Sections 4.2-4.3).   

	

	

	



16	
	

4.2 Useful relations from minimal vs. sub-minimal images  

 The sharp drop in humans’ ability to recognize and interpret a minimal configuration 

when the image is slightly reduced (Ullman et al., 2016), provided a tool for identifying 

useful relations for modeling human interpretation. A minimal image was compared with 

its similar, but unrecognized sub-image, to identify either a missing component (e.g., a 

contour), or a relation (e.g., connected contours that become unconnected), which were 

present in the minimal image but not in the sub-minimal configuration. Examples are 

illustrated in Fig. 7, where pairs of minimal vs. sub-minimal configurations are shown 

(columns 1-2), along with the sets of internal semantic components that were identified 

by human observers in the minimal images (column 3). By using the human annotations, 

we found if any components in the minimal image were missing in its sub-minimal 

image. Using the set of candidate relations, we identified relations that are satisfied in the 

minimal but not the sub-minimal image. The missing component or relation may not be 

unique, and in such cases we evaluated a number of alternatives. The examples in Fig. 7 

include the existence of the left-side tie contour (7A), connectedness of the two horse 

muzzle contours (7B), high-curvature meeting of contours (7C), and characteristic texture 

in the water region (7D). 

 We next evaluated for each of the missing components or relations, how consistent it is 

among other examples of minimal images, and how informative it is for the interpretation 

process, using our full data set of training examples. We start by testing for consistency    

in the set of minimal and sub-minimal pairs of the same class namely, finding additional 

pairs separated by the same component or relation (Fig. 7, columns 5-6). As an initial 

filtering stage, components or relations playing a role in at least 3 additional pairs were 

kept for the next stage, in which they were tested by their contribution to the performance 

of the interpretation algorithm. Each relation (similarly for candidate components) was 

tested by adding it to the set of relations (namely, to the relations 𝑅"), training a new 

interpretation algorithm, and measuring the difference in interpretation performance with 

and without this relation.  

 In more details, to test how informative is a given relation to the interpretation 

process, we have trained and compared two alternative versions of the interpretation 

model.  The first version, (termed ‘basic’), included a limited set of relations commonly 



17	
	

used in the visual structure modeling literature (Sec. 2), namely, unary relations based on 

local texture and shape appearance, and binary ones based on the relative displacement of 

components. The basic model is then compared to a second (termed ‘augmented’) 

interpretation model, where the basic set of relations is augmented with the relation we 

wish to test.  Performance of both models was evaluated on a data set, which included for 

each of the minimal images in Fig. 4, a set of 120 positive examples, and 8000 negative 

(non-class) examples, split between training and validation sets. Performance of the two 

models was compared by classification by the random forest classifier (using the Out-Of-

Bag test for strength of random forest features, Brieman, 2001, Appendix B), to assess 

the contribution of each new relation. Relations that improved random forest 

Figure 7. Inferring relations between internal components with large contribution to recognition and 
interpretation. Minimal and sub-minimal pairs (columns 1,2, recognition rate shown below the images), are 
shown with internal components recognized by humans in the minimal images (column 3). To identify useful 
components and relations for interpretation, we compared the minimal and sub-minimal images. Using the 
identified components, we found if any component in (1) are missing in (2). Using the set of candidate 
relations, we identified relations that are satisfied in (1) but not in (2). The contribution of each missing 
component or relation was then evaluated using training examples (see text). When necessary, several 
alternatives were evaluated. Examples of informative components and relations are shown in column 4. 
Examples of additional MIRC / sub-MIRC pairs in the training set with the same missing component or 
relation, with its effect on recognition, are shown in columns 5,6. Inferred components and relations 
illustrated in the figure are: missing contour element (in A), connectedness of two contours (B), contours meet 
at high curvature (C), and characteristic texture in a region (bounded by the red contour and image border) 
in (D).  
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classification average precision by 1% or more (found in pilot experiments to be 

significant) were incorporated in our set of relations. The final set was subsequently used 

in the overall evaluation of the model applied to the interpretation and recognition of 

minimal and sub-minimal images (Sec. 5). Fig. 7 illustrates the process for example 

relations which were found to be informative for interpreting the corresponding minimal 

images.   

4.3 Useful relations from ‘hard’ negative examples  

 In addition to the sub-minimal images test discussed above, which compared images 

from the same class, a complementary source for identifying useful relations for full 

interpretation is a comparison of minimal configurations with ‘hard’ non-class examples, 

which are difficult in the sense that they are confusable with true class examples by 

current computational models (a deep net model, Simonyan & Zisserman, 2015, and a 

human recognition model, Serre et al., 2007). Such a comparison can identify 

components and relations that are informative for human recognition and interpretation, 

but are missing from current models. We describe next how hard-negative examples were 

generated and how they were used to identify useful relations for interpretation.  

To identify hard negative examples for a given minimal image, we trained a deep CNN-

based classifier (Simonyan & Zisserman, 2015) using 120 examples of the minimal 

image (details in Sec. 5), and a large set of negative examples (200,000 local regions 

cropped and rescaled from various non-class images). We then applied the classifier on a 

validation set (equal in size to the training set), and we retained the 4000 non-class image 

regions with the highest detection scores. These are the hard-negative examples, used in 

the search for informative relations. Similar to the use of sub-minimal images described 

above, the search proceeds along the following steps.  

We start with the ‘basic’ interpretation model as defined in Sec. 4.2 and iterate over the 

following procedure: 

i) Keep the k hard-negative images that received the highest interpretation score 

(since images later required MTurk tests, we used the limit k=40). 

ii) Confirm (using MTurk testing) that these negative examples are not confusable 

for human observers. (Examples that were also difficult for humans were 
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removed from the set in practice, no more than 2 examples were removed at this 

stage).  

iii) Compare the interpretation produced by the model for the images collected in 

(i), to human annotations of the corresponding minimal image examples. As in 

Sec. 4.2, identify components or relations (from the list of candidate relations) 

present in the positive examples but not in the hard negatives.  

iv) For each such a relation, test its contribution to the interpretation model by the 

difference in random forest classification with and without this addition, as in 

Sec. 4.2. 

v) Once relations from all hard negative images were tested, and the contributing 

subset was added to the relations set, train a new version of interpretation model 

Figure 8: Useful relations for interpretation extracted from ‘hard’ negative examples. Columns show (left to right): minimal 
images with their human interpretation, non-class examples with high detection score with their human recognition rate, 
interpretation applied to the negative example by the model. Differences in components or relations are identified and 
evaluated, see text. Column 4 shows relations found to be informative for the interpretation model. They include: high 
straightness of two contours, typical of man-made objects (in A), connectedness of two contours through the ear region (in B), 
connectedness of two contours through a tie knot region (in C), coherent texture between the two shirt parts, see text (in D). 
The identified relations were used to reject hard negatives, examples in the last two columns. 

Identified		components: ‘Hard’	negative: Model	interpretation: Useful	feature: ‘Hard’	negative: Model	interpretation: 
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and repeat the search from step (i), to discover additional relations from hard 

negatives to the new version.  

We iterated this procedure until no new contributing relations were found (at most 3 
iterations were needed per class).  

Fig. 8 illustrates examples of hard negatives discovered and used to identify 

informative relations, and the process of finding these relations. Examples include 

‘highly-straight’ contours (typical for man-made objects) in the horse head (e.g., the red 

and yellow contours in Fig. 8A), the connectedness of horse head contours through the 

ear region (red and cyan contours in Fig. 8B), sharp corners at the tie knot’s (cyan and 

magenta contours, connected inside the brown square in Fig. 8C), and coherent visual 

texture (or intensity level) between the two shirt parts (the area that is left to the red 

contour and the area that is bounded by the contours in cyan and yellow in Fig. 8D).  
 Relation 

Operands 
Description  Relation 

Operands 
Description 

1 All 
primitives 

Location and relative location: for all primitives, and 
for all pairs of primitives in the structure. 

8 Contour, 
Contour 

Length ratio between two contours 

2 Point Strength of intensity maxima/minima, center-
surround filter responses at a point location. 

9 Contour, 
Contour 

Parallelism between two contours 

3 Contour Deviation from line/circular arc: in particular for 
man-made objects. 

10 Region, 
Region 

Coherent visual appearance similar appearance/texture features in region i and 
in region j  

4 Contour Visual appearance along contour distribution of 
visual appearance/texture features along contour. 

11 Contour, 
Point 

Cover of a point by a contour: if a contour i covers a point j. For ‘cover’ refer 
to appendix C. 

5 Region Visual appearance inside a region distribution of 
visual appearance/texture features in a region  

12 Contour, 
Region 

Contour ends in a region: if a contour i ends in a region j. 

6 Contour, 
Contour 

Relative location of contour endings: between 
endings of two different contours 

13 Point, 
Region 

Containment: if point i is inside region j  

7 Contour, 
Contour 

Continuity: smooth continuation between two given 
contour endings. 

14 Contour, 
Contour, 
Region 

Contour Bridging:  Testing whether two disconnected contour elements can be 
bridged (linked in the edge map). 

Table 1.	Relations that were found informative for the learning process, by the method and criterion discussed in Sec. 
4.2 and 4.3. See implementation details for relation procedures in Appendix C.	

4.4 The final set of relations  
The final set of relations, obtained by comparing MIRCs to both sub-MIRCs and hard 

negatives, includes unary relations (properties), binary relations, and relations among 

three or more primitives. Relations in the set are composed of basic relations as listed in 

Sec. 4.2, augmented with candidate relations which proved to contribute to the 

recognition and interpretation accuracy by the computational experiments in Sec. 4.2 and 

4.3. Relations in the library range from low-complexity ones such as computing relative 

location between primitives, to higher complexity procedures such as computing the 

continuity, bridging, or parallelism of contours. Table 1 lists relations with the highest 

contribution, as measured in Sec. 4.2 and 4.3. Technical details for implementing the 

relation procedures are discussed in Appendix C. 



21	
	

5. Experimental evaluation 

So far we have identified the useful components and relations when tested 

individually. We next combined all of them in the full interpretation model (as described 

in Sec. 3) and tested its performance. The full set of relations for the trained model was 

composed of the relations listed in Table 1. To evaluate the full interpretation model, we 

performed experiments to assess (i) the interpretation correctness on novel images, (ii) 

the ability of the interpretation model to predict human recognition at the level of 

minimal image, and (iii) the contribution of informative relations included in the model to 

human recognition, using modified minimal images. 

 Training of the model was obtained as described in Sec. 3, with annotated 

examples of minimal images, and non-class (negative) examples. To get positive class 

examples for the minimal image we wanted to model (e.g., 'horse-head'), we collected 

full-object images from known data sets (Flicker, Google images, ImageNet), and 

manually extracted from each image a local region at the position and size similar to the 

discovered minimal image (Ullman et al., 2016). The minimal image examples used for 

training were in slightly higher resolution than the minimal images found in Ullman et 

al., 2016 (image resolution was increased by factor of 1.5), since we found that using this 

scale during training improved the model results when applied to novel images. 

To have ground truth for the interpretation, two human subjects provided annotation of 

the set of primitives (e.g., Fig. 4A) for all examples (one annotator used for ground truth, 

the other for measuring consistency, details in Appendix A). Negative (non-class) 

examples for training were collected automatically from cropped windows in non-class 

images at similar size to the minimal image. To get hard negative examples, we trained a 

deep CNN classifier (Simonyan & Zisserman, 2015), as described in Sec. 4.3, and 

collected images that received high recognition scores. We next turn to describe our three 

testing procedures, in Sec. 5.1-5.3 below.  

5.1 Comparing model output to human interpretation  
The interpretations produced by the model were compared with the ground truth 

annotations supplied by the human annotators. Since the model is novel in terms of 
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producing full interpretation, it cannot be compared directly with any existing alternative 

models. However, we made our set of annotations publicly available, and the current 

model provides a baseline to also evaluate future results. To assess the role of the 

compound relations derived in Sec. 4.2 and 4.3, we compared results from two versions 

of our model, which differed in the relations included in the model: one using only 

relations based on local appearance, location, and displacement (termed the basic set 

below, indexed 1,4,5 in Table 1), and a second, using the full set of relations in Table 1 

(termed the compound set below).  

 Fig. 9 shows examples of the interpretations produced by the model for novel test 

images. To assess the interpretations, we matched the model output to human annotations 

for multiple examples. Our training set contained 120 positive examples, and 25,000 

Figure 9: Interpretation results for minimal images belonging to (clockwise) a horse-head, a man in 
a suit, an eye, and a bike. (cf. Fig. 4).  
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negative examples for each interpretation model. Our test set contained 480 examples for 

the horse head minimal image (Fig. 4A), 330 examples for the man-in-suit minimal 

image (Fig. 4B), and 120 of the eye (Fig. 4D) and the bike (Fig. 4E) minimal images. We 

automatically matched the ground truth annotated primitives to the interpretation output 

by the so-called Jaccard index, (Tan et. al., 2006), which is a commonly used similarity 

measure for comparing automatic detection results (high Jaccard means similar 

interpretations). This index compares the similarity of two regions, by the area of the 

regions’ intersection divided by area of their union, and was adapted to compare the 

accuracy of detecting region, contour, and point primitives, as illustrated in Fig. 10, and 

explained in more details in Appendix D. Table 2 shows results for the basic and full 

relation sets, as well as agreement between different human annotators, which can serve 

as an upper bound for comparing interpretation performance. Interpretation using the 

compound relations was significantly closer to the ‘ground truth’ human interpretation 

compared with the use of basic set of relations (𝑃 < 4.99×10?@@ for all primitives in 4 

classes, n=33, one-tailed paired t test).  However, the agreement between the model and 

ground truth interpretations was still lower than the agreement between different human 

interpretations (𝑃 < 1.14×10?@+ for all primitives in 4 classes, n=33, one-tailed paired t 

test). 

5.2 Interpretation for predicting minimal and sub-minimal images 

The link between interpretation and recognition, as discussed in Sec. 1.3, suggests that 

the interpretation score (which is a part of the model output) may be used as a part of the 

human recognition process at the minimal image level. In particular, it 	

 

 

Figure 10: Quantitative evaluation of the model interpretation results. We compared interpretation results to human 
annotations based on the Jaccard measure similarity criteria: for regions, contours, and points (see Appendix D for 
details).  

Human	annotations 
Algorithm	output 
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 Basic Compound Humans  Basic Compound Humans 
Horse-head Man-In-Suit 

Ear	region 0.11 0.37 0.60 Knot	region 0.62 0.66 0.74 
Mouth	region 0.69 0.76 0.85 Left	tie	contour 0.48 0.55 0.72 
Neck	region 0.55 0.68 0.74 Right	tie	contour 0.47 0.53 0.72 
Upper	head	contour 0.44 0.69 0.84 Suit-shirt	contour 0.64 0.73 0.83 
Mane	contour 0.34 0.61 0.79 Shoulder	contour 0.50 0.63 0.66 
Lower	head	contour 0.46 0.66 0.79 Left	neck	contour 0.49 0.65 0.84 
Lower	neck	contour 0.32 0.63 0.74 Right	neck	contour 0.39 0.49 0.77 
Eye	point 0.29 0.49 0.60 All	primitives 

Man-In-Suit 0.51 
Basic 0.	61 

Compound 0.75 
All	primitives 0.40 0.	61 0.75 

Eye Bike 
Iris	region 0.39 0.56 0.79	 Fork	region 0.72 0.73 0.80 
Lower	lid	contour 0.47 0.62 0.73	 Tire	lower	contour	(left	side) 0.68 0.75 0.86 

Cornea	contour 0.33 0.60 0.81	 Tire	lower	contour	(left	side) 0.62 0.75 0.90 

Upper	lid	contour 0.41 0.64 0.74	 Bottom	tube’s	upper	contour 0.59 0.74 0.86 

Lower	eyebrow	contour 0.51 0.64 0.83	 Bottom	tube’s	lower	contour 0.54 0.70 0.87 

Upper	eyebrow	contour 0.45 0.51 0.81	 Top	tube’s	lower	contour 0.36 0.43 0.84 
Sclera	point	 0.56	 0.54	 0.79	 Head	tube	contour	 0.49	 0.60	 0.85	
All	primitives 0.44 0.59 0.78	 Tire	upper	contour(right	side) 0.50 0.62 0.81 

Tire	lower	contour(right	side) 0.53 0.57 0.78 
Fork	left	contour	 0.60 0.68 0.82 
Fork	right	contour	 0.59 0.71 0.83 

All	primitives	 0.56 0.66 0.84 

Table 2. Accuracy of the interpretation results, comparing the basic model, compound model, and human annotators. 
Accuracy is measured by the average Jaccard index between the model interpretation and ground truth supplied by 
human annotations. For comparison, human accuracy is measured by the agreement, measured by the Jaccard index, 
between the human annotators.   

is interesting to compare the interpretation scores for minimal and sub-minimal images, 

to assess the usefulness of interpretation for recognition.  

 In human perception, there is a sharp drop in recognition rates at the minimal 

image level: a small change to the image can have drastic effects on recognition rate (Sec. 

1.2, above, Ullman et al., 2016). This sharp drop was not reproduced by computational 

models of recognition, and it therefore becomes of interest to examine whether the 

internal interpretation of minimal image may provide a basis for this perceptual 

sensitivity. It is possible, for example, that even small changes to a minimal image could 

disrupt the presence of key elements and their relations. To test this possibility, we 

measured the gap between human recognition rates for minimal and sub-minimal images 

(via MTurk search on new image examples) and compared it to the gap predicted by two 

models: the current interpretation model, and a classifier based on deep convolutional 

networks (very-deep CNN, Simonyan & Zisserman, 2015), trained on minimal image 

examples. Our test set included 12 examples of minimal images and 20 examples of sub-

minimal images for each of two minimal image categories: the horse-head (Fig. 4A) and 
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man-in-suit (Fig. 4B). The average gap measured between human recognition rates for 

minimal images and for sub-minimal images was 0.75 for the horse head, 0.74 for man-

in-suit. This sharp gap in human recongition at the minimal image level was compared 

with the computational models as described next. 

 To compute the recall gap of models, the model’s classification score was 

compared against an acceptance threshold, and scores above threshold were considered 

true detections. For each model, we set the acceptance threshold to match the human 

recognition rate.  For example, for the man-in-suit, the average human recognition across 

all 12 examples was 0.88, and the model threshold was set so that 11/12 examples will be 

accepted (see Fig. 11A). Recognition rate for the sub-minimal images was then derived 

from the fraction of sub-minimal images exceeding the threshold, and the difference in 

recognition rates defines the model’s recognition gap. 

Figure 11: Recognition of minimal and sub-minimal images. The recognition scores of two models were compared against 
human recognition: a 19-layer feed-forward CNN classifier, and the interpretation model. Columns show minimal and sub-
minimal pairs (a single minimal image can have more than one sub-minimal image) of the man-in-suit (in A,B), and the horse-
head (in C,D). The upper plots show the recognition scores of the CNN and interpretation models. Green dashed line represents 
the human recognition rate threshold. The separation of minimal and sub-minimal images by interpretation increases, and is 
closer to human recognition gap than separation by the deep CNN (E.) Examples of minimal and sub-minimal pairs and their 
interpretation. The interpretation of the minimal images is more accurate compared with the sub-minimal ones. The gray arrows 
point to the corresponding score of each image by the interpretation and CNN models. Notice the scores for the minimal and sub-
minimal images are similar by CNN, and different by interpretation.  

CNN19	model Interpretation CNN19	model Interpretation 

Humans:	
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 The CNN model was trained prior to testing on 120 examples of minimal images 

for each class, and 200,000 non-class examples. The model’s scores for the minimal and 

sub-minimal images on the test sets are shown in Fig. 11A,C. The gaps computed for the 

horse-head and man-in-suit were 0.20, and 0.37, respectively, both considerably smaller 

than the human recognition gap. The second model tested the interpretation trained as in 

Sec. 5.1. Interpretation scores are shown in Fig. 11B,D, along with the interpretation 

examples of minimal and sub-minimal pair from each category. The average 

interpretation gap was 0.75 for the horse-head and 0.76 for the man-in-suit, closely 

similar to the gaps measured for humans. The differences in recognition gap between the 

CNN and interpretation models were highly significant (𝑃 < 2.44×10?- for horse-head, 

𝑃 < 5.7×10?+ for man-in-suit, n=20, Fisher’s exact test). The difference is likely to 

arise because the interpretation model incorporates class-specific properties and relations 

that are not included in the CNN model. We discuss this difference further in Sec. 6.3, 

6.4 below.  

Figure 12: 'Intervention': Testing informative relations via transformed minimal images. (A-C). Rendering 
sketches from images (D). Creating k-color cartoons. (E,F). Re-coloring a small set of pixels ( ≤ 4, pointed by the 
red arrow ) at the same color of their neighboring pixels. In a transformed image, a relation is removed to test its 
predicted role in human perception. Relations tested: sharp curvature in the tie contour (in A), high contour 
straightness (in B), containment of a point in bounded contours (in C), coherent color/texture in the two parts (in 
D), minimum intensity (in E), and maximum intensity (in F). 
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5.3 Testing predicted relations via intervention on minimal images 

 The interpretation model includes informative relations between components, 

which were identified using the data sets of sub-minimal images and hard negative. The 

model predicts that disrupting these relations should reduce the ability of human 

observers to recognize and interpret minimal images.  To further verify the role of these 

relations, we used direct intervention (Pearl, 2009) on minimal images, testing whether 

removing specific relations from the minimal image will decrease human recognition. For 

this purpose, we created transformed versions of the minimal images, in which specific 

relations were selectively manipulated. The transformed versions were then tested 

psychophysically via the MTurk.  

The transformations applied to minimal images included rendering sketches, 

including rendering k-color cartoons (k≤5), and re-coloring a small set of pixels (number 

of re-colored pixels ≤ 4), examples in Fig 12. To create sketches, we traced contours of 

the original MIRC image, either manually as in Fig. 12 A, B (right column), and C, or 

semi-manually using straight lines, as in Fig. 12 B, middle column. Cartoon sketches are 

similar, but using a small number of grey-levels (≤5) for the regions (12D). Re-coloring 

images were done with interactive graphics design tools (Irfan, Photoshop). For all 

sketches, we kept all contours or segments in the minimal image that are used as 

primitives in the interpretation model, and verified that the sketched images were still 

recognizable (e.g., Fig. A-D, middle column).  

In the sketch images, a specific contour or a region can be selectively modified, 

with minimal or no change to other image parts.  We created a modified version for each 

sketch, where selected contours or regions were changed based on the tested property or 

relation (e.g., Fig. A-D, right column). Since we know how a relation is computed in the 

model, we can change contours or regions such that this relation will no longer be 

detected. We then tested whether the specific disruption of a single relation will cause a 

significant drop in MIRC recognition as predicted by the model.  

 The tested relations were taken from the set of the most informative relations in 

the relations set (Table 1). For each tested relation, we first applied a manipulation which 
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removes the relation from the model relations vector (the computed 𝑅") while keeping 

the rest of the relations intact (the model can provide interpretation for both natural and 

sketched minimal images).  

Each relation was tested using five different pairs of manipulated and non-

manipulated versions, and the average human recognition drop for each relation was 

measured. Example results are shown in Fig. 12. Fig. 12A-D used sketches from minimal 

images. The sketched versions eliminated specific relations in the representations: sharp 

curvature (12A, the tie knot, cf. Fig. 8C), high straightness measure (12B, bike contours, 

cf. Fig. 8A), containment of a point in region (12C, bird’s eye) and the coherent 

appearance (in intensity or texture) between two regions (12D, cf. Fig. 8D). In Fig. 12E-

F, a local change was introduced to disrupt the model property of minimal (12E) or 

maximal (12F) local intensity. The change was induced by re-coloring 3-4 pixels, to 

match the average intensity of their neighboring pixels.   

For all tested relations in Fig 12, the manipulation resulted in a significant drop in 

human recognition rate. (For example, Fig. 12A, 5 image pairs, average drop = 0.41, 𝑃 <

2.46×10?-, n=5, one-tailed paired t test. In similar one-tailed paired t tests for Fig. B-F, 

𝑃 < 0.0052 for all cases). In summary, the results show a sharp drop in recognition 

following intervention to eliminate a relation predicted by the model to be highly 

informative for the interpretation of the relevant minimal image. This agreement between 

the model and human recognition supports the proposed role of the tested relations in 

human recognition and interpretation of minimal images.    

6. Discussion and implications 

 In this work, we described a model for local image interpretation, applied to 

minimal recognizable images. The ultimate goal of full image interpretation is to 

recognize meaningful semantic components anywhere in the image, but we used minimal 

images for development and testing of the model for two reasons. First, local 

interpretation reduces the number of components and the complexity of the model, and 

second, using a data set of minimal and sub-minimal images is useful for identifying 

informative components and relations which play a part in the interpretation process.    
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The interpretation model was shown to produce reliable interpretation of local 

image regions. It also helps to explain the sharp drop in recognition between minimal and 

sub-minimal images, which is characteristic of human observers, but not reproduced by 

current bottom-up computational models. It will be interesting to further test in the future 

the agreement between human recognition errors of difficult images and errors made by 

recognition models, with and without an interpretation stage. 

Similar to other cognitive and computational models, interpretation is defined in the 

model in terms of a local structure, composed of components, properties, and relations. 

Our empirical testing of properties and relations proposed in past studies, showed that a 

number of them contributed to the performance of the model (Table 1). In comparison, 

restricting the relations to relative displacements between components (relations 1, 4 and 

5 in Table 1), which are commonly used in computational models, proved insufficient for 

reliable interpretation (Sec. 5.1). Consistent with this computational evidence, a subset of 

the relations used by the model were found to directly affect human recognition, as 

human recognition of modified minimal images, to exclude selected relations, dropped 

significantly. Taken together, the role of the components and relations incorporated in the 

interpretation model is supported by three complementary sources of evidence: their 

contribution to correct interpretation by the model, the effect they have on the sharp 

difference in recognition between MIRCs and sub-MIRCs, and the effects of their 

selective elimination from minimal images on human recognition of these images.  

 Future work in modeling the interpretation process should go beyond the 

interpretation of local regions discussed in this study, towards the interpretation of full, 

natural images. The interpretation of full images is likely to be goal-directed, namely, 

Figure 13. Examples of fine interpretation in recognizing human actions and interactions. (A). Recognizing petting vs. feeding a horse 
depends on the exact location of the human hand on the horse muzzle. (B). Whether the hand is touching the knot or not, determines the 
action of ‘fixing a tie’. (C). The hands contact locations provide important cues for recognizing a ‘hug’ interaction between the agents. 
 

A B C 
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providing detailed interpretation of regions of interest, rather than uniformly across the 

image. Minimal images, at multiple scales, can provide a natural starting point for the 

fuller interpretation process, because they can be reliably recognized and interpreted on 

their own, independent of the surrounding context, and can subsequently help in further 

disambiguation and interpretation of nearby regions.  

6.1 Detailed interpretation for complex visual tasks 

Full interpretation of semantic components at the level produced by the current 

model can play a useful role for extracting meaning from complex configurations, arising 

in tasks such as recognizing actions or social interactions between agents. The reason is 

that the exact meaning of an image may depend on fine localization of object parts and 

the relations between relevant parts, as illustrated in Fig. 13. Relatively little work has 

been done to date on modeling the recognition of complex interactions between agents 

and objects, or between agents. It will be of interest to extend in the future the current 

work, to study the role of detailed image interpretation in the recognition of complex 

actions and agents’ interactions. 

6.2 Learning relations 

	 In the current model, relations between components of the local interpretation are 

used to identify the correct structure. There are two main questions regarding the 

relations used for the purpose of interpretation. The first is the full set of relations that are 

useful for the task, and the second is identifying informative relations for a particular 

local structure (e.g., horse-head). Since the set of so-called ‘basic’ relations proved 

insufficient, we evaluated a larger set of relations, using minimal, sub-minimal, and 

difficult non-class images. The resulting set is not necessarily complete, and future 

studies may identify additional relevant relations. In terms of the human visual systems, 

such relations could be in part pre-existing in the visual system, and in part learned from 

visual experience. Regarding the identification of informative relations for a novel class 

of images, the approach in the model was to examine the full set of possible relations, and 

identify the informative ones using positive and negative examples, where the negative 

examples came from high-scoring non-class examples.  It will be of interest to examine 

in the future the possibility of replacing this search by network learning models, based on 
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positive and negative examples, but without using an explicit set of possible relations. 

The issue of unsupervised learning of semantic components is left for future studies, we 

only note that some components may be learned based on their independent motion 

within the image (e.g. an eye or mouth within a face), or based on points of contact 

between an agent and an object (such as a cup-handle or door-knob).  

6.3 Interpretation and Top-Down processing 

 Our model suggests that the relations required for a detailed interpretation are in 

part considerably more complex than spatial relations used in current recognition models 

(Sec. 2). Furthermore, the experimental results show that the relations used for 

interpretation are often class-specific, in the sense that the most informative relations for  

 

the interpretation of a given class often depend on the class. This is illustrated in Table 3, 

which shows the most informative relations found by the model for the interpretation of 4 

different classes of minimal images. Since the subsets of informative relations are class-

dependent, it will be computationally efficient to compute the more complex relations 

selectively, in a class-specific manner, rather than computing all possible relations for all 

candidate classes. In such a scheme, the interpretation process will be naturally divided 

into two main stages. The first is a bottom-up recognition stage, similar to current feed-

forward models. This stage will lead to the activation of one or several objects classes, 

but without detailed object interpretation. The activated classes will then trigger a top-

down process for the computation of further class-specific components and relations 

required for a detailed interpretation. The interpretation will be also used for validation of 

the activated classes in the first stage, by rejecting bottom-up detections which do not 

have the expected interpretation. Future studies could explore this two-stage proposal 

further by psychophysical and physiological methods. For example, since the accurate 

recognition of minimal images depends in the model on its internal interpretation, the 

Horse-head Man-in-suit Eye Bike 
Intensity	minimum		
(at	the	eye	point) 

Contour	appearance		
(along	the	tie) 

Deviation	from	circular		
(lid	upper	contour)	 

Parallelism	
(tube	contours) 

Contour	Bridging	of	the	mane	
and	mouth	upper	contours	 

Region	appearance		
(suit	region)	 

Cover	of	point	by	contour	
(sclera	by	lid	contour)		 

Continuity		
	(tire	upper	contours) 

Contour	Bridging		
(at	the	mouth)		

Contour	ending	in	region	
(tie	contour	in	knot	region) 

Relative	contour	endings	
	(lower	lid	and	the	iris	contours) 

Region	appearance	
(wheel	region) 

Table 3. Top 3 informative relations found for the different class models of minimal images 
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top-down component predicts that the reliable recognition and interpretation of minimal 

images will be a relatively slow process compared with a single feed-forward pass.  

6.4 Interpretation by network models 

Recognition models based on deep convolutional networks have shown to 

produce high-accuracy results in object classification and promising results in related 

tasks, such as segmentation (e.g., Long et al., 2015). The current model combines 

network algorithms with other methods to extract complex relations and identify the final 

structure. Similar combinations have been used recently by other models that extract 

complex structures (e.g. human pose, Chen and Yuille, 2014, combining CNN with a 

subsequent conditional random field stage; Lake et al., 2015, in the domain of written 

characters). We found that existing feed-forward network models have limited accuracy 

when applied to the interpretation of minimal images. Our evaluation trained a recent 

semantic segmentation network (Long et al., 2015) to identify interpretation components 

of minimal images. The accuracy of the resulting interpretation was closer to the ‘basic’ 

model compared with the full version of the current model (Sec. 5.1). It is plausible, 

however, that extended network models, such as models using recurrence and memory, 

will cope more successfully with local interpretation. It will be of interest to develop such 

models in future work, and compare network structures that prove successful for local 

interpretation, with aspects of cortical circuitry in the visual system, e.g. in terms of using 

recurrent and feedback connectivity.  
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Appendix A. Psychophysics experimental methods 

A.1. Labeling all semantic components in a minimal image:  

This experiment was used for identifying semantic elements which humans can 

consistently identify in minimal images. Subjects (n=30) were presented with a minimal 

image in which a red arrow pointed to a location in the image (e.g., the horse eye, or the 

center of the mouth region), and were asked to name the indicated location. Similarly, a 

contour was marked in red on the image, and subjects produced two labels for the two 

sides of the contours (e.g., tie and shirt). In both cases subjects were asked to also name 

the object they saw in the image (without the markings). To map the scope of ‘full’ 

human-level interpretation, we put the red arrows and contours at multiple image 

locations, and tested their consistent labeling. We considered a recognized component if 

more than 50% of human tags were consistent.  Presentation time was unlimited, and the 

subjects responded by typing the labels. All experiments and	procedures were approved 

by the institutional review boards of the Weizmann Institute of Science, Rehovot, Israel. 

All participants gave informed consent before starting the experiments.   

A.2. Annotating point, contour, and region components in minimal image examples: 

Subjects (N=2) were presented with examples of the semantic components found for a 

given minimal image by the experiment in Appendix A.1 (annotated by points, contours, 

and regions, as in Fig. 4B), and were asked to produce similar annotations in novel 

examples. Annotators were given partially overlapping sets of examples from each class, 

which together covered the complete training and testing sets. At least 50 examples from 

each class were annotated by two different subjects, and were used to test consistency in 

human annotations (see Table 2). The annotated images served as the ‘ground truth’ in 

evaluating the performance of the interpretation model (Sec. 5.1, and Table 2).  

Appendix B. The learning model and procedure   

B.1. A structured learning model based on random forest 

The problem of local interpretation can be viewed as an instance of so-called ‘structured 

learning’ (e.g. Shalev-Shwarts & Ben-David, 2014). As described in Sec. 3.2, given a 

structure 𝑆"  consisting of a set of primitives 𝑃" , and a vector 𝑅"  of relations between 



34	
	

them, we wish to learn an interpretation function 𝑓6 that finds the structure 𝑆"  (denoted 𝑆 

below for simplicity) in an image I    

𝑓6 𝐼 = 𝜋 

where I is the object image, and 𝜋 is not just a class label, but a full assignment, which is 

in our case a mapping between components in the structure 𝑆 and points, contours, and 

regions in the image I. We refer to 𝜋 as an ‘assignment’, since it assigns to any primitive 

in the model	𝑆, a counterpart in the image, identified by 𝜋F. 𝜋 is then a vector 𝜋 =

[𝜋@, 𝜋H, … , 𝜋J], where N is the number of primitives in the model 𝑆. For example, if the 

minimal image is the horse head, and the primitive set in 𝑆 includes, among others, the 

horse eye (primitive index = 1, type = point), and the horse mane contour (primitive 

index = 5, type = contour), then, 𝜋@ is a point in I assigned to the horse’s eye, and 𝜋L is a 

contour in I assigned to the horse’s mane.  

It is common to express the function 𝑓6 using a (learnable) scoring function 

𝑔 𝐼, 𝜋; 𝑤 ,  which measures the compatibility between the model structure 𝑆, and the 

corresponding structure identified in the image. The additional variables 𝑤 are 

parameters of the interpretation function, described below.  𝑓6(𝐼) then takes the form: 

1) 𝑓M 𝐼; 𝑤 = 𝑎𝑟𝑔max
S
{	𝑔 𝐼, 𝜋; 𝑤 	}, 

namely, given an image I (with parameters w already fixed), find the assignment 𝜋 into I 

that has the highest compatibility with the model structure 𝑆. The goal of the function 𝑓6 

is then to find the configuration of elements within the image I, which is as compatible as 

possible with the model structure 𝑆.  

 The function 𝑔 in our interpretation measures the compatibility between 

properties and relations specified by the structure 𝑆 of the model, and the same properties 

and relations computed for the corresponding image elements, identified by the 

assignment 𝜋. This compatibility is computed as follows. Given an assignment 𝜋 of the 

model primitives to the image I, we denote the results of measuring all the model 

relations in the specific image I by the vector 𝜙6(𝜋, 𝐼). Following the example in Sec. 

3.2, position 3 in the vector 𝜙6(𝜋, 𝐼) could be ‘true’ (or 1), indicating that primitive 5 is 
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contained in primitive 7, and position 4 could be 0.9 indicating the degree of straightness 

for primitive 2.  

 The relations vector 𝜙6 𝐼, 𝜋  is then used to measure the compatibility of the 

image structure with the model structure. This is obtained in our model by a random 

forest algorithm (Amit & Geman, 1996; Breiman, 2001), which is learned from training 

examples. A random forest is a non-linear model composed of a set of classification 

trees: 

𝑡@, 𝑡H, … , 𝑡W, … , 

where 𝑡W is the j-th tree in a forest. The parameters w in this model (in the definition of 𝑓6 

and 𝑔) are the queries in the tree nodes, and a standard learning procedure for random 

forests (Breiman, 2001) is used to set these parameters based on training examples. Each 

tree is applied to the relations vector 𝜙6 𝐼, 𝜋  to produce a decision whether the given 

assignment, represented by 𝜋, is consistent with a class structure or not (i.e., the relations 

vector 𝜙6(𝐼, 𝜋) was classified as 1 or 0).  Finally, the function 𝑔 returns the average of all 

tree votes: 

2) 𝑔 𝐼, 𝜋, 𝑤 = @
X

𝑡W(X
WY@ 𝜙6 𝐼, 𝜋 ), 

where 𝐾 is the number of trees in the forest. The assignment we seek is the one that 

maximizes the value of this expression, an effective optimization search is described in 

Appendix B.2 below. 

 The random forest algorithm also provides a method for evaluating the individual 

contribution of each of the relations in the model to the learning process. This is obtained 

by removing a single relation in 𝜙6 𝐼, 𝜋 	in all vectors in our data, and measuring the 

interpretation correctness by the random forest with and without this relation. (Referred 

to as the ‘Out of bag estimate’ for strength of random forest features, Brieman, 2001). We 

used this method in Sec. 4 to derive a set of relations, which are useful for the 

interpretation process. ‘Informative’ relations in Sec. 4 are measured by the difference in 

the performance of the model (the interpretation correctness) with and without the 

relation in question.  
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B.2. Detecting primitive candidates and an effective optimization search 

We describe below how we implemented the calculation of 𝑓6 (Eq. 2), namely, derive the 

best assignment 𝜋 for a given image I. Our implementation includes two stages: (i) 

finding k (k = 10) candidates for each primitive in 𝑆, and (ii) seeking the candidate 

combination that forms the best assignment. In more details, the two stages are 

i. Primitive candidates: For primitives of type ’point’ and ’region’ we find candidates 

in a bottom-up manner:  for ’point’, we consider all pixels in the minimal image, 

and for ’region’ we take all image windows of the region size in a ‘sliding window’ 

search. For type ’contour’ we find the candidates in a top-down manner, as follows: 

We project ground truth annotated contours on an edge map (Arbelaez et al., 2011), 

to get edge contour fragments similar in their location and shape to the ground truth 

ones. We then used connected pairs of fragments (by Kovesi’s edge linking 

toolbox, 2000) as candidates for the contour primitive. We rank all candidates of 

point, contour, and region types by their unary relations in 𝑅" , and keep the top k 

for each primitive. Unary relations used for ranking include visual appearance of 

regions and contours (relations 4 and 5 in Table 1), and intensity minima/maxima 

of points (relation 2 in Table 1). 

ii. Finding the best assignment: Given an image I, a trained model 𝑤, and a set of 

candidates for each primitive in 𝑃" , we run over different configurations of 

candidates in a coordinate descent manner (Bertsekas, 1999). We start with a 

random configuration, and then optimize successively one candidate at a time. 

Specifically, the procedure is:  

1) Start with a random configuration of primitive candidates 𝜋 =

[𝜋@, 𝜋H, … , 𝜋F, … , 𝜋J].  

2) Repeat until g converges:  

For each primitive i, go over all candidates 𝜋F[ and update: 

•  𝜋[ = [𝜋@, 𝜋H, … , 𝜋F[, … , 𝜋J]  

•  𝜋 ← 𝑎𝑟𝑔𝑚𝑎𝑥{𝑔 𝐼, 𝜋, 𝑤 , 𝑔 𝐼, 𝜋[, 𝑤 } 

3) Return 𝜋. 

Such a procedure is guaranteed to converge to a local optimum (Bertsekas, 1999; a 
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similar optimization search was used for Hopfield networks, Hopfield, 1982). 

Experimentally, because the search space in minimal images is limited due to small 

number of primitives, 3 initiations of the procedure were usually sufficient to get good 

convergence.  

Appendix C.  Details of computing relation  

Table 1 in Sec. 4.3 contains the set of relations used in our models. In this appendix we 

add technical details about the computational procedures for computing the different 

relations. For all procedures described here, x,y represent the coordinates of the image 

plane. All procedures were implemented in MATLAB, code is available from the 

authors. 

Containment: Given a pixel point 𝑥, 𝑦  and a set of pixels comprising a region 𝑅, we 

return true if the point is in the region, i.e., 𝑥, 𝑦 ∈ 𝑅. 𝑅 can be either a single region 

primitive, or a region bounded by two (or more) contour primitives. 

Contour ends in a region: Given an end point pixel 𝑥@", 𝑦@"  of a contour 𝐶, and a set of 

region pixels 𝑅, we return ‘true’ if the end point is in the region, i.e., 𝑥@", 𝑦@" ∈ 𝑅. 

Parallelism: Given two contours, 𝐶a and 𝐶b, we compute a binary mask 𝑀: 

𝑀 𝑥, 𝑦 = 1				𝑖𝑓			 𝑥, 𝑦 ∈ 𝐶a		𝑜𝑟		 𝑥, 𝑦 ∈ 𝐶b 

𝑀 𝑥, 𝑦 = 0				𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.																																		 

We then compute the distance transform map (Maurer et al., 2003) for 𝑀, denoted 

𝐷𝑇{𝑀}, followed by a non-maxima suppression to get the ridges R of DT{M}. The ridges 

R is the set of pixels that are at equal distance from both contours. The two contours are 

considered parallel if the variance of R is close to zero. We exclude cases where the size 

of R is small. We thus return ‘true’ if 𝑉𝑎𝑟 𝑅 < 	𝜀, where 𝜀 is a threshold close to zero 

(we chose empirically 𝜀 = 0.2). 

Continuity of contours: Given a contour 𝐶a with  one of its endings: [𝑥@
"m, 𝑦@

"m], and a 

contour 𝐶b with one of its ending: [𝑥@
"n, 𝑦@

"n], we estimate the local orientations at the 

endings, namely 𝜃@
"m and 𝜃@

"n, and use them to compute the completion path between 
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𝑥@
"m, 𝑦@

"m, 𝜃@
"m  and 𝑥@

"n, 𝑦@
"n, 𝜃@

"n  (Ben-Yosef & Ben-Shahar, 2012). We consider ‘good 

continuation’ between the two contours if the completed path does not contain inflection 

points. We return ‘true’ if the number of inflection points in the path equals to zero. 

Bridging contours: Given a contour 𝐶a with one of its endings [𝑥@
"m, 𝑦@

"m], a contour 𝐶b 

with one of its endings [𝑥@
"n, 𝑦@

"n], and the image 𝐼 from which the two contours are 

extracted, we test for an image contour connecting them. We compute the UCM map (an 

edge map, Arbelaez et al., 2011) for 𝐼 and define a graph 𝐺 =< 𝑉, 𝐸 >, where 𝑉 is the 

set all pixels in the UCM map, namely  

𝑣F ∈ 𝑉 ∶ 		𝑈𝐶𝑀(𝑣F) > 𝜏, 

𝜏 is a UCM threshold (𝜏=0.1), and 𝐸 is a set of weighted edges. An edge 𝑒 ∈ 𝐸 is put for 

each pair of pixels in 𝑉 that are immediate image neighbors. The weight of an edge 𝑒 =

𝑣F, 𝑣W  is defined as the difference in UCM levels between pixels: 

𝑤 𝑒 = 𝑈𝐶𝑀(𝑣W) − 𝑈𝐶𝑀(𝑣F) 

(The graph 𝐺 is computed in a pre-process stage.) We return the shortest weighted path in 

𝐺 (if exists) between [𝑥@
"m, 𝑦@

"m] and 𝑥@
"n, 𝑦@

"n .  

The bridging procedure was also extended in two versions: (i) finding a path in G that is 

the most consistent with the ways contours 𝐶a and 𝐶b are connected in positive train 

images, and (ii) finding a path in G that is constrained to pass through region primitive. 

Visual appearance inside regions or along contours: Given a candidate image region 

𝑅a for a primitive	𝑅 in the model, we match the distribution of the visual appearance 

features in 𝑅a and in the training examples of 𝑅. Visual appearance features were ‘visual 

words’ features (Arandjelovic & Zisserman, 2013), and deep neural network features 

(Long et al., 2015). For a contour candidate, we used a similar match of visual 

appearance features, this time along a thin region surrounding the contour. 

Coherent visual appearance: Given two candidate image regions 𝑅a and 𝑅b, we match 

the distribution of the visual appearance features in these two regions. Visual appearance 
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features were ‘visual words’ features (Arandjelovic & Zisserman, 2013), and deep neural 

network features (Long et al., 2015). 𝑅a or 𝑅b could be either a single region primitive, 

or a region bounded by two (or more) contour primitives. 

Cover of a point by a contour: Given a pixel point 𝑥, 𝑦  and a contour C, we project C 

on the X axis of the image plane, and return ‘true’ if x is within the range of projection. 

We composed procedures for different directions of cover, namely for a contour covers a 

point from top or from bottom. Similar ‘cover’ procedures were also for the Y axis.   

 Appendix D. Evaluating similarity between elements: points, contours, and regions 

This process was used for evaluating the correctness of the interpretation produced by the 

model (Sec. 5.1). For two regions, A and B, the standard Jaccard measure 

( 𝐴 ∩ 𝐵 / 𝐴 ∪ 𝐵  , Tan et al., 2006) was used. For two points, we construct a small 

square region around each point (size of 12% of the minimal image), and then evaluate 

the Jaccard index of these regions. For two contours, we used a simple extension of the 

Jaccard index to contours, by extending the contours into tube shaped regions (tube width 

was 4% of the minimal image) and measure the Jaccard index between these regions. 
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