
CBMM Memo No. 067 December 26, 2017

Musings on Deep Learning: Properties of SGD
by

Chiyuan Zhang1 Qianli Liao1 Alexander Rakhlin2 Brando Miranda1 Noah Golowich1 Tomaso Poggio1

1Center for Brains, Minds, and Machines, McGovern Institute for Brain Research,
Massachusetts Institute of Technology, Cambridge, MA, 02139.

2 University of Pennsylvania

Abstract: We ruminate with a mix of theory and experiments on the optimization and generalization properties of deep convolutional
networks trained with Stochastic Gradient Descent in classification tasks. A present perceived puzzle is that deep networks show good
predictive performance when overparametrization relative to the number of training data suggests overfitting. We dream an explanation of
these empirical results in terms of the following new results on SGD:

1. SGD concentrates in probability - like the classical Langevin equation – on large volume, “flat” minima, selecting flat minimizers
which are with very high probability also global minimizers.

2. Minimization by GD or SGD on flat minima can be approximated well by minimization on a linear funcion of the weights, suggesting
pseudoinverse solutions.

3. Pseudoinverse solutions are known to be intrinsically regularized with a regularization parameter λ which decreases as 1
T

where T is
the number of iterations. This can qualitatively explain all the generalization properties empirically observed for deep networks.

4. GD and SGD are connected closely to robust optimization. This provides an alternative way to show that GD and SGD perform
implicit regularization.

These results explain the puzzling findings about fitting randomly labeled data while performing well on natural labeled data. They also
explain while overparametrization does not result in overfitting. Quantitative, non-vacuous bounds are still missing, as it has almost always
been the case for most practical applications of machine learning.

This is version 3, which differs from version 2 only in the title. The first version was released on 04/04/2017 at https://dspace.mit.edu/handle/1721.1/107841.

1

This work was supported by the Center for Brains, Minds and Machines (CBMM), funded by
NSF STC award CCF - 123 1216.

2

1 Introduction

In the last few years, deep learning has been tremendously successful in many important applications of machine learning. However, our
understanding of deep learning is still far from complete. A satisfactory characterization of deep learning should at least cover the following
parts: 1) representation power — what types of functions can neural networks (DNNs) represent well and what are the advantages and
disadvatages over using shallow models? 2) optimization of the empirical loss — can we characterize the convergence of stochastic gradient
descent (SGD) on the non-convex empirical loss encountered in deep learning? 3) why do the deep learning models, despite being highly
over-parameterized, still predict well?

The first two questions are addressed in Theory I [1] and Theory II [2] respectively. In this paper, we focus on the last question, and try to
provide a hybrid theoretical and empirical view of it. More specifically, we study learning, especially in over-parameterized DNNs, by
optimizing the empirical loss with SGD.

We remind that generalization is defined as the following property: the gap between empirical and expected error goes to zero with increasing
size of the training set. Consistency is a different property: the empirical error converges to the optimal Bayes error with increasing size of
the training set. Both properties can be distribution dependent or independent and both have strong and weak forms.

In the case of one-pass SGD, where each training point is only visited at most once, the algorithm is optimizing the expected loss directly.
Therefore, there is no need to define the empirical loss and to measure generalization: consistency is key here and it holds under rather
general conditions. However, in practice, unless one has access to infinite training samples, one-pass SGD is rarely used. Instead, it is almost
always better to run many passes of SGD over the same training set. In this case, the algorithm is optimizing the empirical loss, and the
deviation between the empirical loss and the expected loss (i.e. the generalization error) must be controlled.

In statistical learning theory, the deviation is usually controlled by restricting the complexity of the hypothesis space. For example, in binary
classification, for a hypothesis space with VC-dimension d and N i.i.d. training samples, the generalization error could be upper bounded
by O(

√
d/N). In the distribution-free setting, the VC dimension also provide a lower bound for the generalization error. On the other

hand, for overparametrization (d � N), there is a data distribution under which the generalization error could be arbitrarily bad [3]. As
we will discuss later this worst case behavior was recently demonstrated by a randomization test on large deep neural networks that have
the full capability of shattering the whole training set [4]. In those experiments, zero-error minimizers for the empirical loss are found by
SGD. Since the test performance must be at chance level, the worst possible generalization error is observed. On the other hand, those same
networks are found to achieve low expected error on image classification datasets, without obvious regularization-like mechanisms such as
weight decay or data augmentation. This creates an apparent puzzle that we will discuss in section 6.1 as the classical characterization of
distribution-independent generalization no longer readily applies. We observe that the puzzle is misleading because consistency may hold in
the absence of generalization. A very classical example is 1-Nearest Neighbor, which is an algorithm with zero empirical error for all N and
good asymptotic performance in terms of expected error. More in general, k-NN algorithms for all fixed k do not have generalization. In fact,
if the Bayes error is zero, k-NN algorithms are consistent for all k!

In this paper, we speak very loosely about two regimes for training deep convolutional networks (in the specific case of CIFAR). In the
underconstrained regime – which is the standard one for deep learning applications – in which n ≤W , where n is the size of the training set
and W is the number of weights– the empirical error can be zero, when, as described in Theory I and II, the regression function underlying
the problem is contained in the class of (compositional) functions that are well approximated by the convolutional network and the weights
in the network are sufficient for it (this exclude too many “dummy” weights) . On the other hand, the generalization error - the difference
between empirical and expected error – may not go to zero for n→∞. We show that the expected error in the underconstrained regime can
be low because SGD implicitely regularizes. In the over-constrained regime – n ≥W – generalization follows from classical bounds on
neural networks with a finite number of weights (assuming the weights themsleves are bounded). As side-effects of these basic results we
show close relations between SGDL, robust optimization wrt perturbations of the weights and regularization. Finally, we discuss how recent
puzzling results on generalization by deep (and shallow) networks can be explained.

In the rest of the paper, we try to address this set of issues at the level of formal rigor of a physicist (not a mathematician: this will come
later). With a mix of theoretical and empirical results, we show that isotropic flatness around the global minimizers play a key role in the
generalization of over-parameterized deep neural networks.

Notice that in all computer simulations reported in this paper, we turn off all the “tricks” used to improve performance such as data
augmentation, weight decay etc. in order to study the basic properties of the SGD algorithm. As a consequence, performance is not state of
the art but maximum performance is not our goal here.

1.1 Related work

Deep Learning references start with Hinton’s back-propagation and with LeCun’s convolutional networks (see [5] for a nice review). Of
course, multi-layer convolutional networks have been around at least as far back as the optical processing era of the 70s. The Neocognitron[6]

was a convolutional neural network that was trained to recognize characters, inspired by the hierarchical processing postulated by Hubel and
Wiesel[7] from their recordings of simple and complex cells in visual cortex. The property of compositionality was a main motivation for
hierarchical models of visual cortex such as HMAX which was described as a pyramid of AND and OR layers[8], that is a sequence of
conjunctions and disjunctions. In Theory I [1] we have provided formal conditions under which deep networks can use the compositionality
to avoid the curse of dimensionality.

A number of recent papers have mentioned some of the ideas explored in this paper. For instance Soatto et al. [9] remark that almost-flat
regions of the energy landscape are robust to data perturbations, noise in the activations as well as perturbations of the parameters — which
are as we show later directly related to good generalization. They also note that wide valleys should result in better generalization and that
optimization algorithms in deep learning seem to discover exactly that.

Recent work by Keskar et al.[10] is even more relevant. The authors estimate the loss in a neighborhood of the weights to argue that small
batch size in SGD (i.e., larger gradient estimation noise, see later) generalizes better than large mini-batches and also results in significantly
flatter minima. In particular, they note that the stochastic gradient descent method used to train deep nets, operate in a small-batch regime
wherein a fraction of the training data, usually between 32 and 512 data points, is sampled to compute an approximation to the gradient.
They discuss the common observation that when using a larger batch there is a significant degradation in the quality of the model, as
measured by its ability to generalize. We provide theoretical arguments for the cause for this generalization drop in the large-batch regime,
supporting the numerical evidence of Keskar et al.. The latter shows that large-batch methods tend to converge to sharp minimizers of the
training and testing functions — and that sharp minima lead to poor generalization. In contrast, small-batch methods consistently converge
to minimizers that generalize better, and our theoretical arguments support a commonly held view that this is due to the inherent noise in the
gradient estimation.

On the other hand, as shown in [11], sharp minimizers do not necessarily lead to bad generalization performance. Due to the parameterization
redundancy in deep neural networks, given any (flat) minimizers, one can artificially transform the weights to land in a sharp but equivalent
minimizer because the function defined by the weights are the same. However, the argument in [11] does not conflict with our argument that
flat minimizers generalize well. Moreover, it is not clear whether SGD will select the somewhat artificial sharp minimizers created by the
equivalent transformations. Notice that isotropic flat minima in the loss wrt all weights – in which we are interested – cannot be transformed
in sharp minima.

Another recent paper (after the first version of this memo) [12] is relevant in terms of the intuition about margin and low expected error
(but not generalization as claimed!). In [12], the authors prove nonvacuous bounds for the expected error of stochastic neural networks,
that is, neural networks for which the weights w are chosen randomly from some distribution D. It remains an open question, however,
whether the fact that the expected error is small in expectation over the weights w ∼ D, implies that for a specific weight vector, suppose
w0 := Ew∼D[w], leads to expected error that is nearly as low.

In another line of work [13, 14], the authors prove generalization error bounds on neural networks that are expressed primarily in terms of
various norms of the weights of the network. Such bounds are obtained by controlling the Rademacher complexity of certain classes of
norm-bounded neural networks; these bounds generalize some of the results in [15]. The idea that generalization error bounds depending on
the size of the parameters rather than the number of parameters dates back to [16], where similar, though weaker, generalization bounds were
shown, based on the fat-shattering dimension.

More recently, [17] has proven another norm-based bound for fully-connected networks, which depends on the product of the spectral norms
of the matrices defining each layer of the network, as well as the sum of the vectorized `1 norms of each layer. This work emphasized the
importance of margin in ensuring generalization, similar to earlier works on boosting [18]. In the binary classification case, where the neural
network computes a function f : Rd → R, and the class of x ∈ Rd is decided based off of sign(f(x)), the margin of a training point xi
can be defined as f(xi)yi. The results of [17] (as well as [18], and related works such as [15]) show that if f has large margin on many of the
training data points, then tighter generalization bounds can be proven.

The puzzles mentioned in the abstract and text refer mainly to the recent work of one of us [4], which is one of the motivations of this paper.
Even more recently, [19] descibe similar puzzles for kernel machines trained without regularization terms by SGD. Our results should be
helpful in explaining them.

2 Background Facts

We describe here several previous results and observations that are key for our results about generalization.

2.1 Landscape of the Empirical Risk

In Theory II [2] we have described some features of the landscape of the empirical risk, for the case of deep networks of the compositional
type (with weight sharing, though the proofs do not need the weight sharing assumption). We assumed over-parametrization, that is more
parameters than training data points, as most of the successful deep networks. Under these conditions, setting the empirical error to zero
yields a system of ε-approximating polynomial equations that have an infinite number of solutions (for the network weights). Alternatively,
one can replace the RELUs in the network with an approximating univariate polynomial and verify empirically that the network behavior is
essentially unchanged. The associated system of equations allows for a large number of solutions – when is not inconsistent – which are
degenerate, that is flat in several of the dimensions (in CIFAR there are about 106 unknown parameters for 6× 104 equations. Notice that
solutions with zero empirical error are global minimizers. No other solution with zero-error exists with a deeper minimum or less generic
degeneracy. Empirically we observe (see Theory II) that zero-minimizers correspond to isotropically flat regions – not just valleys. In this
paper, we will use the word flatness in two distict meanings (the context makes clear which meaning): one to refer to degeneracy of the
empirical minimizers, the other to refer to isotropical flatness around the zero of the empirical loss.

2.2 SGD: Basic Setting

Let Z be a probability space with an unknown measure ρ. A training set Sn is a set of i.i.d. samples zi, i = 1, . . . , n from ρ. Assume
a hypothesis H is chosen in advance of training. Here we assume H is a p-dimensional Hilbert space, and identify elements of H with
p-dimensional vectors in Rp. A loss function is a map V : H× Z → R+. Moreover, we assume the expected loss

I(f) = EzV (f, z) (1)

exists for all f ∈ H. We consider the problem of finding a minimizer of I(f) in a closed subset K ⊂ H. We denote this minimizer by fK
so that

I(fK) = min
f∈K

I(f) (2)

In general, the existence and uniqueness of a minimizer is not guaranteed unless some further assumptions are specified.

Since ρ is unknown, we are not able evaluate I(f). Instead, we try to minimize the empirical loss

ISn(f) = Êz∼SnV (f, z) =
1

n

n∑
i=1

V (f, zi) (3)

as a proxy. In deep learning, the most commonly used algorithm is SGD and its variants. The basic version of SGD is defined by the
following iterations:

ft+1 = ΠK (ft − γt∇V (ft, zt)) (4)

where zt is a sampled from the training set Sn uniformly at random, and ∇V (ft, zt) is an unbiased estimator of the full gradient of the
empirical loss at ft:

Ezt∼Sn [∇V (ft, zt)] = ∇Î(ft)

γt is a decreasing sequence of non-negative numbers, usually called the learning rates or step sizes. ΠK : H → K is the projection map
into K, and when K = H, it becomes the identity map. It is interesting that the following equation, labeled SGDL, and studied by several
authors, including [20], seem to work as well as or better than the usual repeat SGD used to train deep networks, as discussed in Section 5:

ft+1 = ft − γn∇V (ft, zt) + γ′tWt. (5)

Here Wt is a standard Gaussian vector in Rp and γ′t is a sequence going to zero.

We consider a situation in which the expected cost function I(f) can have, possibly multiple, global minima. As argued by [21] there are two
ways to prove convergence of SGD. The first method consists of partitioning the parameter space into several attraction basins, assume that
after a few iterations the algorithm confines the parameters in a single attraction basin, and proceed as in the convex case. A simpler method,
instead of proving that the function f converges, proves that the cost function I(f) and its gradient Ez∇V (f, z)) converge.

Existing results show that when the learning rates decrease with an appropriate rate, and subject to relatively mild assumptions, stochastic
gradient descent converges almost surely to a global minimum when the objective function is convex or pseudoconvex1, and otherwise
converges almost surely to a local minimum. This direct optimization shortcuts the usual discussion for batch ERM about differences
between optimizing the empirical risk on Sn and the expected risk.

Often extra-assumptions are made to ensure convergence and generalization by SGD. Here we observe that simulations on standard databases
remain essentially unchanged if the domain of the weights is assumed to be a torus which is compact, because the weights remain bounded
in most cases.

3 Consistency and Generalization

“ Folk theorems” as well as classical bounds (see 8.1) suggest that generalization requires more data than the number W of “effective”
parameters – though of course the number of parameters is not a general measure of the network complexity that is relevant for generalization.
This is typically not the case in the current use of deep networks. Curiously, the recent wave of papers related to prediction performance
of deep learning has mostly neglected the important fact that good accuracy on new data (consistency) can take place in the absence
of generalization – defined as the convergence of empirical risk to expected risk as the number of data N increases. As we mentioned
already, a classical example is the NN algorithm which can be proven to perform quite well in general but does not generalize in a
distribution-independent way.

Loosely speaking we distinguish two phases (in principle both n and W grow to infinity):

1In convex analysis, a pseudoconvex function is a function that behaves like a convex function with respect to finding its local minima, but need not actually be convex. Informally, a
differentiable function is pseudoconvex if it is increasing in any direction where it has a positive directional derivative.

1. n ≥W where N is the number of training data and W is the number of “effective” parameters: this is the “classical” situation for
generalization

2. n ≤W : this is the “new” regime in which SGD performs well in terms of consistency but may not have generalization.

Figure 1 shows that at least for this experiment on CIFAR there seem to be generalization for N > W as expected and, though there is no
generalization for N < W , the test error – as a proxy for the expected error – is good. The random label case in Figure 2 makes it very clear.
The expected error is at chance level throughout; the training error is zero for n << W , but starts to increase to reach the expected error for
n > W . The behavior in the “classical” regime – on the right side of the figures – can be accounted for by several theoretical approaches
that we describe in this section. The behavior in the second regime seems to require a novel approach. We show however that it can be
explained with rather classical and even linear results.

Figure 1: The figure shows the behavior of a deep network trained on subsets of the CIFAR database. The network is a 5-layer all
convolutional network (i.e., no pooling) with 16 channels per hidden layer , resulting in only W ≈ 10000 weights instead of the typical
300, 000. Neither data augmentation nor regularization is performed. The two regimes described in the text are for N > W and N < W
respectively.

The classical theory characterizes generalization behavior as a function of n the number of training examples. But a more practical question
is which architecture to choose for a fixed, given number of examples N . In fact, Figures 1 and 2 prompt some additional questions:

• for a fixed N is it better wrt expected error to train a deep network with N ≥W or with N ≤W ?

• is the mechanism explaining generalization the same that explain good expected error performance for N ≤W ?

The empirical answer to these questions is shown in Figures 3 and 4 and it is surprising: it appears that the increase in the number of
parameters does not yield any overfitting. We will first deal with the classical regime N �W and then take on the challenge of explaining
the non-overfitting behavior shown on the right of Figure 3.

Figure 2: The figure shows the behavior of a deep network trained on subsets of the CIFAR database in which the labels have been randomly
scrambled. The network is a 5-layer all convolutional network (i.e., no pooling) with 16 channels per hidden layer, resulting in only
W ≈ 10000 weights instead of the typical 300, 000. Neither data augmentation nor regularization is performed. The two regimes described
in the text are for N > W and N < W respectively.

4 Classical generalization bounds

This section though necessary for completeness is too boring. As a consequence, it landed in the Appendix which the reader may consult
because some of the definitions necessary for the following are there. The Appendix reviews a number of approaches used to prove
generalization – that is convergence to zero of the gap between empirical and expected error for n → ∞. Though some of them do not
explicitely require n�W , they “seem” empirically vacuous in our experiments with CIFAR for n�W .

5 The puzzle: SGD for the underdetermined case

The puzzle seems outside classical learning theory: why there is no overfitting for increasing overparametrization? Why is the expected error
so low in the non-classical regime of N < W in which we cannot speak about generalization? Our conjecture is that

Conjecture 1. • SGD, while minimizing the empirical loss also maximizes the volume, that is “flatness”, of the minima, effectively
linearizing the problem wrt weights

• in the linear case SGD and GD converge to the pseudoinverse-based solution

Our argument can be loosely described as follows. In the overparametrized regime, SGD selects with high probability large volume minima,
that mostly correspond to flat minima, because those correspond to large regions of zero loss. Furthermore for flat minima SGD and GD
converge to the pseudoinverse-based solution for the unknown weights. This means that the solution found is the minimum norm one among

Figure 3: The previous figures show dependence on N – number of training examples – for a fixed architecture with W parameters. This
figure shows dependence on W for a fixed training set with N examples. The network is again a 5-layer all convolutional network (i.e., no
pooling). All hidden layers have the same number of channels. Neither data augmentation nor regularization is performed. The classical
theory explains the generalization behavior on the left; the challenge is to explain the lack of overfitting for W > N .As expected from
Theory II[2], there is zero error as soon as W = N and for W ≥ N .

the infinite degenerate solutions that correspond to zero empirical error. In this sense, those minimum norm solutions also correspond to
large margin solutions: the intuition is that they are robust to perturbations of the weights and thus to corresponding perturbations of the
input vector. The last step in the argument is that large margin solutions generalize well in the case of classification. Thus increasing the
number of parameters does not change this regularizing behavior of SGD, exactly as in the linear case. As a side remark, we will later show
that SGD is similar to robust optimization, providing implicit regularization.

A similar argument underlies the following intuition that links Theory II with this memo: the unique zero minimizers for n < W but
close to W become degenerate, that is flat, for n ≤W . Among them SGD chooses the one with the minimum L2 norm and thus with the
best generalization. Notice that overparametrization does not necessarily improve the test error which is optimal around the the boundary
between over- and under-parametrization.

We consider the steps of our argument in turn, starting with properties of SGD that have been so far unrecognized from the machine learning
point of view, to the best of our knowledge.

5.1 SGD as an approximate Langevin equation

We consider the usual SGD update defined by the recursion

ft+1 = ft − γt∇V (ft, zt), (6)

Figure 4: The plot is the same as Figure 3 but with a linear scale for the number of parameters W .

where zt is fixed,∇V (ft, zt) is the gradient of the loss with respect to f at zt, and γt is a suitable decreasing sequence. When zt ⊂ [n] is a
minibatch, we overload the notation and write∇V (ft, zt) = 1

|zt|
∑
z∈zt ∇V (ft, z).

We define a noise “equivalent quantity”

ξt = ∇V (ft, zt)−∇ISn(ft), (7)

and it is clear that Eξt = 0.

We write Equation 6 as

ft+1 = ft − γt(∇ISn(ft) + ξt). (8)

With typical values used in minibatch (each minibatch corresponding to zt) training of deep nets, it turns out that the vector of gradient
updates∇V (ft, zt) empirically shows components with approximate Gaussian distributions (see Figure 5). This is expected because of the
Central Limit Theorem (each minibatch involves sum over many random choices of datapoints).

Now we observe that (8) is a discretized Langevin diffusion, albeit with a noise scaled as γn rather than
√
γn. In fact, the continuous

SGD dynamics corresponds to a stochastic gradient equation using a potential function defined by U = ISn [f] = 1
n

∑n
i=1 V (f, zi) (see

Proposition 3 and section 5 in [22]). If the noise is the derivative of the Brownian motion, it is a Langevin equation – that is a stochastic
dynamical system – with an associated Fokker-Planck equation on the probability distributions of ft. The asympotic probability distribution

is the Boltzman distribution that is ≈ e
−U
γK .

-5 0 5

L
a
y
e
r

2

0

500

1000

-5 0 5
0

500

1000

-5 0 5
0

500

1000

-5 0 5
0

500

1000

-5 0 5
0

500

1000

-5 0 5

L
a
y
e
r

3

0

500

1000

-2 0 2
0

500

1000

-5 0 5
0

500

1000

-2 0 2
0

500

1000

-2 0 2
0

500

1000

-5 0 5

L
a
y
e
r

4

0

500

1000

-2 0 2
0

500

1000

-2 0 2
0

500

1000

-2 0 2
0

500

1000

-2 0 2
0

500

1000

-1 0 1

L
a
y
e
r

5

0

500

1000

-1 0 1
0

500

1000

-5 0 5
0

1000

2000

-2 0 2
0

500

1000

-1 0 1
0

1000

2000

-2 0 2

L
a
y
e
r

6

0

1000

2000

-5 0 5
0

1000

2000

-2 0 2
0

1000

2000

-2 0 2
0

1000

2000

Training error: 0.000965

-2 0 2
0

1000

2000

Figure 5: Histograms of some of the components of ∇V (ft, zi) over i for fixed t in the asymptotic regime. Notice that the average
corresponds to the gradient of the full loss and that is empirically very small. The histograms look approximatively Gaussian as expected
(see text) for minibatches that are not too small or too large.

For more details, see for instance section 5 of [23]. Several proofs that adding a white noise term to equation (6) will make it converge to a
global minimum are available (see [24]). Notice that the discrete version of the Langevin dynamics is equivalent to a Metropolis-Hastings
algorithm for small learning rate (when the rejection step can be neglected).

5.2 SGDL concentrates at large volume, “flat” minima

The argument about convergence of SGDL to large volume minima tha we call “flat”, is straighforward. The asymptotic distribution reached
by a Langevin equation (GDL) –as well as by SGDL – is the Boltzman distribution that is

p(f) =
1

Z
e−

U
T , (9)

where Z is a normalization constant, U is the loss and T reflects the noise power. The equation implies, and Figure 8 shows, that SGD
prefers degenerate minima relative to non-degenerate ones of the same depth. In addition, among two minimum basins of equal depth, the
one with a larger volume, is much more likely in high dimensions (Figure 7). Taken together, these two facts suggest that SGD selects
degenerate minimizers and, among those, the ones corresponding to larger isotropic flat regions of the loss. Suppose the landscape of the
empirical minima is well-behaved in the sense that deeper minima have broader basin of attraction.Then it is possible to prove that SDGL
shows concentration – because of the high dimensionality – of its asymptotic distribution Equation 9 – to minima that are the most robust to
perturbations of the weights. Notice that these assumptions are satisfied in the zero error case: among zero-minimizer, SGDL selects the

Training Epoch

0 20 40 60

T
ra

in
in

g
 E

rr
o
r

o
n
 C

IF
A

R
-1

0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0

0.0001

0.001

0.01

Training Epoch

0 20 40 60

V
a
lid

a
ti
o
n
 E

rr
o
r

o
n
 C

IF
A

R
-1

0

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0

0.0001

0.001

0.01

Figure 6: Equation 5 – that is SGD with added Gaussian (with constant power) – behaves in a similar way to standard SGD. Notice that
SGDL has slightly better validation performance than SGD.

ones that are flatter, i.e. have the larger volume2.

Conjecture 2. Under regularity assumptions on the landscape of the empirical minima, SGDL corresponds to the following robust
optimization

min
w

max
(δ1,··· ,δn)

1

n

n∑
i=1

V (yi, fw+δi(xi)). (10)

Notice that isotropic and non-isotropic degeneracy is expected to be the key factor for SGDL to converge to zero-minimizers. It is especially
important to note that SGDL and SGD maximize volume and “flatness” of the loss in weight space. Given a flat minimum, one may ask
where SGD will converge to. For situations such as in Figure 9 and for a minimum such as in Figure 10, arguments similar to Appendix
9.6 may hold approximately, suggesting a locally minimum norm solution (see Equation 34). In particular, the weight values found by
SGD are expected to be mostly around their average value over the flat region (at least in the case of square loss). We can also consider the
polynomial describing f(x) – the function computed by the network when each RELU is replaced by a univariate polynomial approximant.
In this case f(x) is a linear function in the vector X comprising all the relevant monomials, implying that SGD converges to the minimum
norm solution in X .

Figure 7: The figure shows the histogram of a one-dimensional slice of the asymptotic distribution obtained by running Langevin Gradient
Descent (GDL) on the potential surface on the right. The potential function has two minima: they have the same depth but one has a flat
region which is a factor 2 larger in each of the dimensions. The 1D histogram for the first weight coordinate is shown here for dimensionality
1, 2, 3, 4 and 5D. The figures graphically show – as expected from the asymptotic Boltzman distribution – that noisy gradient descent selects
with high probability minimizers with larger margin. As expected, higher dimensionality implies higher probability of selecting the flatter
minimum.

2Given a zero minimizer there is no other minimizer that has smaller volume AND is deeper.

Figure 8: Langevin Gradient Descent (GDL) on the 2D potential function shown above leads to an asymptotic distribution with the
histogram shown on the left. As expected from the form of the Boltzman distribution, the Langevin dynamics prefers degenerate minima
to non-degenrate minima of the same depth. In high dimensions we expect the asymptotic distribution to concentrate strongly around the
degenerate minima as confirmed on figure 9.

Figure 9: The figure shows the histogram of a one-dimensional slice of the asymptotic distribution obtained by running Langevin Gradient
Descent (GDL) on the potential surface on the right. As expected from the form of the Boltzman distribution, the Langevin dynamics prefers
degenerate minima to non-degenrate minima of the same depth. Furthermore, as dimensions increase the distribution concentrates strongly
around the degenerate minima. This can be appreciated from the figure because the histogram density at W1 = 2 (the degenerate minimum)
decreases in density rapidly as dimensions increases.

Figure 10: Stochastic Gradient Descent and Langevin Stochastic Gradient Descent (SGDL) on the 2D potential function shown above leads
to an asymptotic distribution with the histograms shown on the left. As expected from the form of the Boltzman distribution, both dynamics
prefers degenerate minima to non-degenerate minima of the same depth.

5.3 SGD finds minimum norm solutions (and maximizes geometrical margin)

Traditionally the functional margin of a correctedly classified data point yi, xi is defined as the quantity γ = yif(xi)
3. For a linear classifier

f(x) = Wx, the geometrical margin is the distance in input space from the classification boundary and is maximized by minimizing ||W ||2.
3A perhaps more satisfyng approach is the following: propose a new definition of margin that directly capture the idea of measuring robustness to perturbations, show that it is equivalent to

the old definition of geometrical margin in the linear case. The new definition we propose is

In the nonlinear case it is difficult in general to relate the functional margin yif(xi) to the geometrical margin.

Flatness of the minima around some w0 values of the weight vector suggests (to an ex-physicist) the following linear approximation of the
network function f realized by the network in the neighborhood of the flat minimum:

f(x;w)− f(x;wo) ≈ ([∇wf(x]]w0 ,∆w) = (φ(x),∆w) (12)

where (·, ·) is the scalar product and φ is a vector function of the input x but with the dimensionality of the weight vector, parametrized by
the weights (set to w0).

Assume for now that w0 ≈ 0. Then GD or SGD iterations starting at the minimum of the loss function would converge (see [25] to the
pseudoinverse solution of the linear problem that is

Deltaw ≈ Φ = E (13)

,

with solution

Deltaw = EΦ† (14)

,

where Φ is the matrix with columns the φ(xi) vectors evaluated at each of the training data xi, Ei = yi − f(xi, w0) are the errors. Since
the pseudoinverse regularizes and generalizes this would be the solution. The key problem is the assumption w0 = 0: there is no obvious
guarantee that wi or combinations of them corresponding to degenerate directions will have zero or small norm at the minima. The result
above only says that such directions will not change. While the Appendix provides a more complete result we state here the conclusion of
our argument

Lemma 1. Assume that SGD (or GD) reaches a zero-error minimum after T iterations and the associated weights have small norm. Further
iterations are guranteed to lead to a minimum norm change of parameters. In particular, the L2 norm of the weights associated with
degenerate directions will not increase.

Another approach to show that SGD provides large margin is is based on the equivalence between SGD and forms of robust optimization
and is presented in Appendix 9.3. The proofs are rigorous only in the case of linear networks and approximate otherwise. The previous
arument only holds within the validity of a linear approximation.

Thus SGD should select minimizers corresponding to maximum geometrical margin.

5.4 “Equivalence” between perturbations in weights and in input

The following example presents a difficulty in any argument that establishes some sort of relation to robustness to perturbations in weights
and in the input data.

Let x ∈ R, w ∈ R2d, f(w, x) = x ·
∑d
j=1 w1,dw2,d. f may be viewed as a very simple 1-hidden layer neural network with linear activation

functions, with d hidden units in the first hidden layer. Note that f is in fact fully connected.

Note that ∂f
∂x

=
∑d
j=1 w1,dw2,d, for i ∈ [d],

∂f

∂w1,i
= xw2,i,

∂f

∂w2,i
= xw1,i.

Now suppose that wj,i = 1 for all i ∈ [d], j ∈ [2] (this may correspond to the solution found for some training set by gradient descent).

Note that for all |x| ≤ b, we have that
∣∣∣ ∂f
∂wj,i

∣∣∣ ≤ b, but that ∂f
∂x

= d� b for small constants b.

In light of this example, any result we prove cannot hold for layers of arbitrary sizes, and any sort of relation will have a factor of d, where d
grows at least as quickly as the size of the first hidden layer.

Definition 1. For a given functional margin yif(xi), the geometrical margin is

γ = max||∆x||2 | sign(yif(xi)) = sign(yif(xi + ∆x)). (11)

(a) natural label (b) random label

Figure 11: Illustration of the landscape of the empirical loss on CIFAR-10.

6 SGD puzzles

Two puzzling properties of deep networks that we can now account for are

• the no generalization behavior tested with training data with random labels, see[4], while expected error is much better than chance for
natural labels;

• the behavior shown in Figure 13 and Figure 15: the expected error, which decreases with increasing training set size, is not affected by
increasing the number of parameters beyond the training data size.

6.1 Random Labels

In the first case, Theory II predicts that it is in fact possible to interpolate the data on the training set, that is to achieve zero empirical error
(because of overparametrization) and that this is in fact easy – because of the very high number of zeros of the polynomial approximation of
the network– assuming that the target function is in the space of functions realized by the network. For n going to infinity we expect that the
empirical error will converge to the expected (chance), as shown in Figures 1 and 2. For finite n when n < W , the fact that the empirical
error (which is zero) is so different from the expected is puzzling, as observed by [4], especially because the algorithm is capable of low
expected error with the same n for natural labels (and also when trained with random labels but tested with perturbations of the training
images, see Figures in Appendix 9.5).

The puzzle is explained in terms of the distribution-dependent geometrical margin in the linearized case. Our theory suggests that SGD
maximizes margin since minimum norm corresponds to maximum margin in the linear case. A larger margin is in fact found for natural
labels than for random labels as shown in Table 1 and in Figure 11 and Figure 12. Figure 11 shows “three-point interpolation” plots to
illustrate the flatness of the landscape around global minima of the empirical loss found by SGD, on CIFAR-10, with natural labels and
random labels, respectively. Specifically, let w1, w2, w3 be three minimizers for the empirical loss found by SGD. For λ = (λ1, λ2, λ3) on
the simplex ∆3, let

wλ = λ1w1 + λ2w2 + λ3w3 (15)

We then evaluate the training accuracy for the model defined by each interpolated weights wλ and make a surface plot by embedding ∆3 in
the 2D X-Y plane. As we can see, the natural label case depict a larger flatness region around each of the three minima than the random
label case. Section 7.1 shows a direct relation between the range of flatness and the norm λ of the perturbations. Note that λ is also the
regularization parameter (see section 9.4: larger λ means greater regularization, which implies better stability (β-stability of regularization
has β ≈ K

λn
) and better generalization bounds.

The same phenomenon could be observed more clearly on the MNIST dataset, where the images of the same category are already quite
similar to each other in the pixel space, making it more difficult to fit when random labels are used. Therefore, the difference in the
characteristics of the landscapes is amplified. As shown in Figure 12, big flat regions could be observed in the natural label case, while the
landscape for the random label experiment resembles sharp wells.

(a) natural label (b) random label

Figure 12: Illustration of the landscape of the empirical loss on MNIST.

MNIST CIFAR-10
all params 45.4± 2.7 17.0± 2.4

all params (random label) 6.9± 1.0 5.7± 1.0
top layer 15.0± 1.7 19.5± 4.0

top layer (random label) 3.0± 0.1 12.1± 2.6

Table 1: The “flatness test”: at the minimizer, we move the weights around in a random direction, and measure the furthest distance until the
objective function is increased by ε (0.05), and then measure the average distance.

It is difficult to visualize the flatness of the landscape when the weights are typically in the scale of one million dimensions. To assess the
isotropic flatness, we employ the following procedure around a minimum found by SGD: choose a random isotropic direction δw with
‖δw‖ = 1, perform a line search to find the “flatness radius” in that direction:

r(w, δw, ε) = sup{r : |Î(w)− Î(w + rδw)| ≤ ε} (16)

The procedure is repeated T times and the average radius is calculated. The overall procedure is also repeated multiple times to test the
average flatness at different minima. The results are shown in Table 1. For both CIFAR-10 and MNIST, we observe a difference between the
natural label and random label.

6.2 No Overfitting with Increasing Network Size

In the second case, what is important for low expectation error is not parameter number but size of the training set. The intuition comes from
Theory II: minimization by SGD finds global minima that are similar to minimum norm solutions – which are not changed by increasing
the number of equations beyond the number of data points. Local minima instead are determined by the number of parameters since they
determine the number of equations for the critical points of the gradient: this implies that increasing the number of parameters much beyond
the number of data in the training set, should not affect generalization but may make it easier to find global minima relative to local minima.
In summary overparametrization in Figure 4 for W > n does not affect the test error because SGD will disregard degenerate directions.

Architecture Number of Parameters Training Accuracy Test Accuracy

MLP 1x512 1,209,866 100.0 50.51
Alexnet 1,387,786 100.0 76.07

Inception 1,649,402 100.0 85.75
Wide Resnet 8,949,210 100.0 88.21

Table 2: A number of different network architectures are trained on CIFAR-10. We turn off all the regularizers in order to avoid implicitly
constraining the hypothesis space size. We found that despite the network size continuously increases, the test performance does not drop,
but even improves.

Figure 13: Training with different training set sizes (from 500 to 50,000, one per curve) on CIFAR-10. It shows what happens to empirical
and testing error if one severely reduces the number of training examples. There is overfitting and little generalization with small training
sets.

7 Discussion

7.1 Comments on Robustness wrt Weights and Robustness wrt Data

A natural intuition, that we discuss further in Appendix 9.7, is that several forms of stability are closely related. In particular, perturbations
of the weights follow from perturbations of the data points in the training set because the function f(x) resulting from the training is
parametrized by the weights that depend on the data points Sn: f(x) = f(x;w(z1, · · · , zn)), with z = (x, y)4 . Thus isotropic flat regions
in weight space of the global minimum of the empirical loss indicate stability with respect to the weights; the latter in turn indicates stability
with respect to training examples.

7.2 Summary: why and when SGD has low expected error and why and when it generalizes

We conjecture that low expected error in the regime of N < W and of generalization in the regime N > W exhibited by deep convolutional
networks in multi-class tasks such as CIFAR10 and Imagenet are due to three main factors:

• the implicit regularizing effect of SGD

• the task is compositional

• the task is multiclass.

4In a differentiable situation, one would write df = df
dw

dw
dS dS and dw = dw

dS dS. The latter equation would show that perturbations in the weights depend on perturbations of the
training set S.

Figure 14: Training with different training set sizes (from 500 to 50,000, one per curve) on CIFAR-10. This is a larger model with more
parameters.

Speed of convergence of SGD is not the deep reason for good generalization. We expect the speed of convergence to be correlated with good
generalization because convergence will depend on the relative size of the basins of attraction of the minima of the empirical risk, which
in turn depend on the ratio between the effective dimensionality of the minima and the ambient dimensionality. Theory III in this paper,
together with Theory II, answers the question about the unusual properties of Stochastic Gradient Descent used for training overparametrized
deep convolutional networks. SGDL and SGD select with high probability solutions with zero or small empirical error (Theory II) – because
they are flatter. It is interesting that among these solutions GD and SGD select the best in achieving low expected error – because they are
the minimum norm solutions and thus have a large margin, are the most stable wrt parameters, most stable wrt training data and most stable
with respect to the x value.

7.3 Open questions

The main task is to quantify the qualitative characterization of generalization and consistency of convolutional deep networks given here. In
particular, which non-vacuous bounds may relate margin to expected error? Can we spell conditions on data distributions that yield large
margin and low expected error? Can we improve SGD or find optimal parameters such as mini-batch size?

Acknowledgment

This work was supported by the Center for Brains, Minds and Machines (CBMM), funded by NSF STC award CCF – 1231216. We gratefully
acknowledge the support of NVIDIA Corporation with the donation of the DGX-1 used for this research.

References
[1] T. Poggio, H. Mhaskar, L. Rosasco, B. Miranda, and Q. Liao, “Why and when can deep - but not shallow - networks avoid the curse of dimensionality: a review,”

tech. rep., MIT Center for Brains, Minds and Machines, 2016.

[2] T. Poggio and Q. Liao, “Theory ii: Landscape of the empirical risk in deep learning,” arXiv:1703.09833, CBMM Memo No. 066, 2017.

[3] S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning: From Theory to Algorithms. Cambridge eBooks, 2014.

Figure 15: Generalization error as a function of number of parameters in the network. Generalization error is defined as the difference
between training error and validation error. We train a 4-hidden-layer convolutional network with different training set sizes on CIFAR-10.
Different curves correspond to different training set sizes (from 500 to 50,000). All models are trained 30 epochs. Increasing the number of
parameters does not hurt generalization.

[4] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understanding deep learning requires rethinking generalization,” in International Conference on
Learning Representations (ICLR), 2017.

[5] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, pp. 436–444, 2015.

[6] K. Fukushima, “Neocognitron: A self-organizing neural network for a mechanism of pattern recognition unaffected by shift in position,” Biological Cybernetics,
vol. 36, no. 4, pp. 193–202, 1980.

[7] D. Hubel and T. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex,” The Journal of Physiology, vol. 160, no. 1,
p. 106, 1962.

[8] M. Riesenhuber and T. Poggio, “Hierarchical models of object recognition in cortex,” Nature Neuroscience, vol. 2, pp. 1019–1025, Nov. 1999.

[9] P. Chaudhari, A. Choromanska, S. Soatto, Y. LeCun, C. Baldassi, C. Borgs, J. Chayes, L. Sagun, and R. Zecchina, “Entropy-SGD: Biasing Gradient Descent Into
Wide Valleys,” arXiv:1611.01838 [cs], Nov. 2016. arXiv: 1611.01838.

[10] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang, “On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima,”
arXiv:1609.04836 [cs, math], Sept. 2016. arXiv: 1609.04836.

[11] L. Dinh, R. Pascanu, S. Bengio, and Y. Bengio, “Sharp minima can generalize for deep nets,” arXiv preprint arXiv:1703.04933, 2017.

[12] G. Karolina Dziugaite and D. M. Roy, “Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural Networks with Many More Parameters than
Training Data,” ArXiv e-prints, Mar. 2017.

[13] B. Neyshabur, R. Tomioka, and N. Srebro, “Geometry of Optimization and Implicit Regularization in Deep Learning,” arXiv preprint arXiv:1705.03071, 2017.

[14] B. Neyshabur, R. Tomioka, and N. Srebro, “Norm-Based Capacity Control in Neural Networks,” arXiv:1503.00036 [cs, stat], Feb. 2015. arXiv: 1503.00036.

[15] V. Koltchinskii and D. Panchenko, “Empirical margin distributions and bounding the generalization error of combined classifiers,” Annals of Statistics, pp. 1–50,
2002.

[16] P. L. Bartlett, “The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network,” IEEE
transactions on Information Theory, vol. 44, no. 2, pp. 525–536, 1998.

[17] P. Bartlett, D. J. Foster, and M. Telgarsky, “Spectrally-normalized margin bounds for neural networks,” ArXiv e-prints, June 2017.

[18] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line learning and an application to boosting,” J. Comput. Syst. Sci., vol. 55, pp. 119–139,
Aug. 1997.

[19] S. Ma and M. Belkin, “Diving into the shallows: a computational perspective on large-scale shallow learning,” ArXiv e-prints, Mar. 2017.

[20] S. Gelfand and S. Mitter, “Recursive stochastic algorithms for global optimization in Rd,” Siam J. Control and Optimization, vol. 29, pp. 999–1018, September
1991.

[21] L. Bottou, “Online algorithms and stochastic approximations,” in Online Learning and Neural Networks (D. Saad, ed.), Cambridge, UK: Cambridge University
Press, 1998. revised, oct 2012.

[22] D. Bertsekas and J. Tsitsiklis, “Gradient Convergence in Gradient methods with Errors,” SIAM J. Optim., vol. 10, pp. 627–642, Jan. 2000.

[23] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-dynamic Programming. Athena Scientific, Belmont, MA, 1996.

[24] B. Gidas, “Blobal optimization via the Langevin equation,” Proceedings of the 24th IEEE Conference on Decision and Control, pp. 774–778, 1985.

[25] L. Rosasco and S. Villa, “Learning with incremental iterative regularization,” in Advances in Neural Information Processing Systems, pp. 1630–1638, 2015.

[26] M. Anthony and P. Bartlett, Neural Network Learning - Theoretical Foundations. Cambridge University Press, 2002.

[27] S. Bubeck et al., “Convex optimization: Algorithms and complexity,” Foundations and Trends R© in Machine Learning, vol. 8, no. 3-4, pp. 231–357, 2015.

[28] H. Xu and S. Mannor, “Robustness and generalization,” CoRR, vol. abs/1005.2243, 2010.

[29] N. Srebro, K. Sridharan, and A. Tewari, “Smoothness, low noise and fast rates.,” in NIPS (J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and
A. Culotta, eds.), pp. 2199–2207, Curran Associates, Inc., 2010.

[30] S. Gelfand and S. Mitter, “Recursive Stochastic Algorithms for Global Optimization in $\mathbb{R}^d $,” SIAM J. Control Optim., vol. 29, pp. 999–1018, Sept.
1991.

[31] S. B. Gelfand and S. K. Mitter, “Metropolis-Type Annealing Algorithms for Global Optimization in R^d,” SIAM Journal on Control and Optimization, vol. 31,
no. 1, pp. 111–131, 1993.

[32] S. Rajasekaran, “On the Convergence Time of Simulated Annealing,” Technical Reports (CIS), Nov. 1990.

[33] M. Raginsky, A. Rakhlin, and M. Telgarsky, “Non-convex learning via stochastic gradient langevin dynamics: A nonasymptotic analysis,” arXiv:180.3251 [cs,
math], 2017.

[34] S. Mandt, M. D. Hoffman, and D. M. Blei, “A Variational Analysis of Stochastic Gradient Algorithms,” arXiv:1602.02666 [cs, stat], Feb. 2016. arXiv: 1602.02666.

[35] F. Anselmi, L. Rosasco, and T. Tan, C.and Poggio, “Deep Convolutional Networks are Hierarchical Kernel Machines,” Center for Brains, Minds and Machines
(CBMM) Memo No. 35, also in arXiv, 2015.

[36] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski, Robust Optimization. Princeton Series in Applied Mathematics, Princeton University Press, October 2009.

[37] H. Xu, C. Caramanis, and S. Mannor, “Robustness and regularization of support vector machines,” J. Mach. Learn. Res., vol. 10, pp. 1485–1510, Dec. 2009.

[38] M. Hardt, B. Recht, and Y. Singer, “Train faster, generalize better: Stability of stochastic gradient descent,” CoRR, vol. abs/1509.01240, 2015.

[39] S. Mukherjee, P. Niyogi, T. Poggio, and R. Rifkin, “Learning theory: stability is sufficient for generalization and necessary and sufficient for consistency of
empirical risk minimization,” Advances in Computational Mathematics, vol. 25, no. 1, pp. 161–193, 2006.

[40] P. L. Bartlett and S. Mendelson, “Rademacher and gaussian complexities: Risk bounds and structural results,” Journal of Machine Learning Research, vol. 3,
no. Nov, pp. 463–482, 2002.

[41] S. M. Kakade, K. Sridharan, and A. Tewari, “On the complexity of linear prediction: Risk bounds, margin bounds, and regularization,” in Advances in neural
information processing systems, pp. 793–800, 2009.

[42] B. M. Lake, R. Salakhutdinov, and J. B. Tenenabum, “Human-level concept learning through probabilistic program induction,” Science, vol. 350, no. 6266,
pp. 1332–1338, 2015.

[43] A. Maurer, “Bounds for Linear Multi-Task Learning,” Journal of Machine Learning Research, 2015.

8 First Appendix: classical generalization bounds for N > W

8.1 Classical generalization bounds

The simplest and oldest bound is provided by theorem 16.2 in [26] which provides the following sample bound for a generalization error εG
with probability at least 1− δ in a network in which the W parameters (weights and biases) that minimize the empirical error (the theorem
is stated in the standard ERM setup) are expressed in terms of k bits:

M(εG, δ) ≤
2

ε2G

(
kW log 2 + log

(
2

δ

))
(17)

An interesting comparison between shallow and deep compositional networks based on this bound is described in Appendix 9.1.

8.2 Covering number of the space explored by SGD

Definition 2 (Covering Number). The covering number Nε(K) for a set K is the minimum cardinality of a set C, such that

K ⊂
⋃
x∈C

B(x; ε)

where B(x; ε) denotes a metric ball of radius ε centered at x. The metric should be clear from the context unless otherwise specified.

The motivation is that when we run an actual learning algorithm (e.g. SGD) on a hypothesis spaceH, the algorithm that runs in finite time
might only be able to explore a subset K. Therefore the effective hypothesis space is K instead ofH. We would like to characterize Nε(K),
which might be much smaller than Nε(H).

Consider the SGD algorithm as defined in (4). If there is an explicit projection step onto the set K, then we could compute Nε(K) directly.
If there is no explicit projection, then for an algorithm that runs for T steps:

fT = fT−1 − γT−1∇V (fT−1, zT−1)

= f0 −
T−1∑
t=0

γt∇V (ft, zt)

The effectively explored space can be controlled if we have a bound on the size of the accumulated gradients,∥∥∥∥∥
T−1∑
t=0

γt∇V (ft, zt)

∥∥∥∥∥ ≤ GT (18)

where GT should be a universal bound that is independent of the actual sampled training data, and of the randomness of the algorithm. Our
formulation should apply to both the case of pure SGDs and multi-epoch SGDs. In this case, it is clear that

fT ∈ K = B(f0;GT)

Lemma 2. In a d dimensional Euclidean space, for ε ∈ (0, r), the covering number of a Euclidean ball is bounded as

Nε(B(·; r)) ≤
(

3r

ε

)d
(19)

Remarks Applying the lemma directly with the bound GT on SGD movements, we get

Nε(K) ≤
(

3GT
ε

)d
The uniform bounds on generalization are roughly of order

O

(√
logNε(K)

n

)
≤ O

(√
d log(3GT /ε)

n

)
As long as the bound GT grows slower than exp(n), then generalization should be possible. Here T > n in the multiple epoch case.

Convex learning with Lipschitz Loss Consider the case of convex learning problem with an L-Lipschitz loss function. With a constant
step size γ = R/(L

√
T), where T is the total number of (full) gradient steps, and ‖f0 − f?‖ ≤ R, then an optimization convergence rate

on the loss of O
(
RL√
T

)
could be obtained [27]. In this case,∥∥∥∥∥

T−1∑
t=0

γ∇V (ft, zt)

∥∥∥∥∥ ≤ γ
T−1∑
t=0

‖∇V (ft, zt)‖

≤ R

L
√
T

T−1∑
t=0

L

≤ R
√
T

By plugging GT ≤ R
√
T , we get the following generalization bound

O

(√
d log(T/ε)

n

)

As a result, as long as the number of optimizing steps grows less than exponentially in the number of training samples, generalization could
be guaranteed.

Convex learning with smooth loss For the Lipschitz loss, the scale of gradients does not necessarily decay even when approaching the
optimal solution (e.g. the absolute value function). For smooth loss, the gradients becomes smaller when we get closer to the optimal.
Therefore, the bound on the movements by the gradient methods could be improved.

Furthermore, when we have an explicitly (and fast enough) decay rate of the size of the gradients, we might be able to get finer-grain control
by realizing that after some fixed number of steps, the gradients are so small that they will remain within an ε-ball.

8.3 Robustness-based Bounds for Generalization

A way to theoretically connect “flatness” in weight space to existing generalization results, is to invoke the notion of weak robustness
and to show that it is equivalent to flatness of a minimizer. Theorem 18 in [28] proves that weak robustness is necessary and sufficient for
generalization. For simplicity, we focus on robustness (instead of weak robustness) since robustness implies generalization which is our
focus here. We use the notation of [28].

Definition 3. Algorithm A is (K, ε(·))-robust, for K ∈ N and ε(·) : Zn 7→ R, if Z can be partitioned into K disjoint sets, denoted by
C = (Ci)

K
i=1, such that the following holds: for any dataset S ∈ Zn, ∀s ∈ S and ∀z ∈ Z, ∀i = 1, · · · ,K: if s, z ∈ Ci, then

‖V (AS , s)− V (AS , z)‖ ≤ ε(S) (20)

Theorem 1. If a learning algorithm A is (K, ε(·))-robust, and the training sample set S is generated by N IID draws from µ, then for any
δ > 0, with probability at least 1− δ we have,

|L(As)− `lemp(AS)| ≤ ε(S) +M

√
2K log 2 + 2 log(1

δ
)

n
, (21)

with M being an upper bound on the loss function V .

The key step in the argument about flatness, stability and generalization is to prove that flatness implies robustness as defined above.

We now extend theorem 1 to a data dependent version using a standard union bound. Suppose algorithm A is robust for a countable collection
K of pairs (KC , εC()), indexed by C, where C is the partition of size KC in the definition of robustness. We have in mind a situation where a
coarse partition can be set (in a data-independent way) with a potentially larger function εC but smaller KC , while a more fine partition
would yield a smaller value of εC but a larger KC . Since εC(S) is a data-dependent quantity, the optimal choice of the partition can only be
performed after seeing the data.

Theorem 2. If a learning algorithm A is (KC , εC(·))-robust for a collection K of pairs,

P

{
|L(As)− `lemp(As)| ≤ inf

(KC ,εC(·))∈K

[
εC(S) +M

√
2KC log 2 + 2 log((π(C)δ)−1

n

]}
≥ 1− δ (22)

for any prior distribution π(C) on the collection K.

As an example, consider a collection of axis-aligned grid partitions with granularity γ. If the input space is [0, 1]d, the size of the partition is
(1/γ)d, and the corresponding function εC , of course, depends on the algorithm. One can then assign a prior probability proportional to
1/k2 for discretization at level γ = 2−k, in which case the penalty π(C) is log k (as, for instance, in [15]).

In our CIFAR case the key question is how large K is and whether it is smaller than N .

Remarks

The authors in [28] assume that f is a L-layer neural network of the binary tree type with P ReLU units per node and D = 2L inputs, trained
on Zn by SGD algorithm ASn with loss V (AS , z) = |y −AS(x)| = |y − fS(x)|, with z = (y, x) and weights taking values on the torus.
They define the network as follows. The input to the first layer is

x0 := x; (23)

the output of layer v − 1 is xv with components

∀v = 1, · · · , L− 1: xvi := [

2P∑
j=1

wv−1
i,,j x

v−1
j]+; i = 1, · · · , dv; (24)

where dv = P × 2L−v

fS(x) = [

dL−1∑
j=1

wL−1
j xL−1

j]+. (25)

The ReLU nonlinearity is Lipschitz continuous since [a]+ − [b]+ ≤ β|a− b| with β = 1. If the weights are bounded then it follows that

∑dv
j=1 w

v
i,j ≤ α∀v, i (thus the largest α is α ≤ 2Pπ). As an aside, note that, in the case of compositional networks, the use of the path

norm should give better bounds than [28]. Lemma 22 in [28] proves then that under these conditions such a multilayer network is robust in the
infinity norm and therefore generalizes. As noted by [28] the total number of hidden units does not play a role in the bound. Notice also
that the local connectivity of deep local networks (such as convolutional network and more in general networks matched to compositional
functions) avoids the appearance of the dimensionality of the inputs xi.

8.4 Distribution Dependent Generalization because of functional margin

In repeat SGD there is a training set and an empirical risk that we write in the form

ISn(f) =
1

n

n∑
i

V (f, zi) (26)

It is clear from the previous sections that repeat SGD provably generalizes under relatively weak assumptions – similar to the usual conditions
of convergence of SGD. The problem is of course to provide bounds on the expected error that are non-vacuous for the regime of W > N .
Several of the classical bounds are meaningless in this case (see section 8.1), but other proofs are possible (see 8.5).

The observations relevant here are:

• We assume that the space of functions expored by SGD is compact. One way is to assume Lipschitz and convexity. Another is to set as
an hypothesis “If ft remains bounded then...”. In practice, boundness of some kind must be assumed. It is in principle guaranteed
by numerical limits of computer simulations. A simple way to ensure compactness – as a theoretical trick which will not make any
difference in the usual simulations – is to assume that the coordinates are periodic – that is that the domain is a torus. Then standard
covering numbers arguments guarantee generalization for N > W .

• The following arguments are needed to ensure bounds that are independent of the explicity ratio W
N

. We remark that SGDL should
asymptotically select among the zero-minimizers the ones which have minimum norm (and thus large margin). We provide empirical
support for large empirical margin in the case of CIFAR in the Figures 17 . We introduce the zero-one loss and the γ-margin empirical
zero-one loss which is defined as IS,γ(h) = 1

n

∑n
i=1 Iyih(xi)<γ . We then use Theorem 5 in [29]

Theorem 3. For any hypothesis class (F), with |f | ≤ b, and any δ > 0 , with probability at least 1 − δ, simultaneously for all
margins γ > 0 and all f ∈ F

I(f) ≤ 1.01IS,γ(f) +K

2 log3 n

γ2
R2
n +

2 log

(
log

(
4b
γ

)
δ

)
n

 (27)

where K is an appropriate numeric constant,R is the Radamacher complexity of the space of functions F .

Under the same hypotheses that guarantee compactness for the space of solution of SGD,R2 goes to zero with increasing N because
the covering numbers provides an upper bound on Radamacher averages. Additionally, by checking Equation 27, we can observe that
zero-minimizers have a better generalization bound if they have larger margin.

Theory I results (see 8.1) imply thatN (F) for d-dimensional functions of a Sobolev space with smoothness s grow as logN (F) ∼ (1
ε
)
d
s . On

the other hand for the subset of hierarchically local compositional functions (Fc – and for the set of functions generated by the corresponding
networks of which convolutional networks are a subset – the covering numbers are much smaller, only growing as logN (Fc) ∼ d(1

ε
)
h
s as a

function of d.

Since

Rn ≤ C · inf
ε>0

{
ε+

1√
n

∫ ‖F‖∞
ε

√
logNδ(F)dδ

}
(28)

we conclude that the term R2
n is smaller for convolutional networks than for equivalent shallow networks. This may be the reason for

the good prediction properties of deep networks when the underlying function to be learned is compositional. Furthermore, the covering
numbers of the subset of functions in a ball around the golbal minimizer should be even smaller, because the effective d is dictated by the
number of data and not by the much larger number of weights. Apart from this non-rigorous argument„ generalization is also controlled by
the margin γ. We now collect together the results from Theory I and II and from the previous sections in this paper to claim the following

Proposition 1. • Good expected error by deep networks relative to shallow networks in tasks that correspond to learn a compositional
function (or a linear combination of a “small” number of them) follows from the smaller Radamacher complexity .

• Consistency is further controlled by the empirical margin of minimizers that depends not only on the distributions of inputs xi but also
on the distribution of yi.

• Later we will show that SGDL prefers among the minima the degenerate zero-minimizers – if they exist; among the degerate
zero-minimizers it prefers the ones with flattest minima, that, as we will show later, correspond to the largest margin.

In summary, SGDL (and likely also SGD) selects with high probability the minimizers that do the best job in terms of minimizing expected
error. This suggests that the large-margin argument to explain consistencyin the regime W > N also explains generalization in the regime
W < N .

8.5 Global minimization and stability under regularization-like assumptions

The most interesting proofs for our goal are available for the case of Langevin equations and annealing techniques where results about global
optimization and stability of the algorithm have become available. Gelfand and Mitter [30, 31] prove convergence of Langevin equations
to global minima. Related results on simulated annealing for finite Markov chains ([32]) prove polynomial convergence time (meaning
probability of visiting the global optimum at least once). A very recent paper by Raginsky et al.[33] considers a version of SGD – called
SGDL – in which isotropic Gaussian noise is added to an estimate of the gradient. They also prove global convergence but in addition the
prove generalization with rates independent of parameter numbers or size and valid in the case of general loss functions. In order to apply
their results to standard SGD one should first prove that SGD is a good approximation of a Langevin equation (and that their results still hold
approximatively). We skip this step because there are empirical reasons to believe that SGDL may the better way to train neural networks. In
particular our numerical analysis suggests that the behavior of SGDL is very similar to SGD but SGDL consistently shows a slightly better
generalization performance. In the next section, hoever, we provide theoretical and numerical arguments for the intuition that SGD is similar
to SGDL and in fact to a Langevin equation (GDL) . This claim is not new: there are previous analyses of it. As an example see[34].

9 Second Appendix: Various Topics

9.1 Generalization Bounds: comparison with compositional networks

The following is from section 8 in Theory I [1], provided here for completeness.

Assume a network size that ensure the same approximation error ε . Then in order to achieve the same generalization error εG, the sample
size Mshallow of the shallow network must be much larger than the sample size Mdeep of the deep network:

Mdeep

Mshallow
≈ εn. (29)

This implies that for largish N there is a (large) range of training set sizes between Mdeep and Mshallow for which deep networks
will not overfit (corresponding to small εG) but shallow networks will (for dimensionality N ≈ 104 and ε ≈ 0.1 Equation 29 yields
mshallow ≈ 10104

mdeep).

A similar comparison is derived if one considers the best possible expected error obtained by a deep and a shallow network. Such an error is
obtained finding the architecture with the best trade-off between the approximation and the estimation error. The latter is essentially of the
same order as the generalization bound implied by inequality (17), and is essentially the same for deep and shallow networks, that is

rn√
M
, (30)

where we denoted by M the number of samples. For shallow networks, the number of parameters corresponds to r units of N dimensional
vectors (plus off-sets), whereas for deep compositional networks the number of parameters corresponds to r units of 2 dimensional vectors
(plus off-sets) in each of the N − 1 units. Using our previous results on degree of approximation, the number of units giving the best
approximation/estimation trade-off is

rshallow ≈
(√

M

n

) n
m+n

and rdeep ≈
(√

M
) 2
m+2 (31)

0 50 100 150 200 250 300 350 400
training epochs

0

20

40

60

80

100

cifar10-wide-resnet28-1-Init0.01_lr0.1_mmt0.9_NoWd_NoAug
Fan-in l1 norms of weights

(a) Fan-in `1 norms, Init×0.01

0 50 100 150 200 250 300 350 400
training epochs

0

20

40

60

80

100

120
cifar10-wide-resnet28-1-Init0.1_lr0.1_mmt0.9_NoWd_NoAug

Fan-in l1 norms of weights

(b) Fan-in `1 norms, Init×0.1

0 50 100 150 200 250 300 350 400
training epochs

0

20

40

60

80

100

cifar10-wide-resnet28-1-Init1_lr0.1_mmt0.9_NoWd_NoAug
Fan-in l1 norms of weights

(c) Fan-in `1 norms, Init×1

0 50 100 150 200 250 300 350 400
training epochs

0

25

50

75

100

125

150

175
cifar10-wide-resnet28-1-Init5_lr0.1_mmt0.9_NoWd_NoAug

Fan-in l1 norms of weights

(d) Fan-in `1 norms, Init×5

0 50 100 150 200 250 300 350 400
training epochs

50

100

150

200

250

300

cifar10-wide-resnet28-1-Init10_lr0.1_mmt0.9_NoWd_NoAug
Fan-in l1 norms of weights

(e) Fan-in `1 norms, Init×10

0 50 100 150 200 250 300 350 400
training epochs

30

40

50

60

70

80

90

100

pr
ec

1

cifar10-wide-resnet28-1-Init0.01_lr0.1_mmt0.9_NoWd_NoAug

train prec1
validation prec1

(f) Learning curves, Init×0.01

0 50 100 150 200 250 300 350 400
training epochs

40

50

60

70

80

90

100
pr

ec
1

cifar10-wide-resnet28-1-Init0.1_lr0.1_mmt0.9_NoWd_NoAug

train prec1
validation prec1

(g) Learning curves, Init×0.1

0 50 100 150 200 250 300 350 400
training epochs

50

60

70

80

90

100

pr
ec

1

cifar10-wide-resnet28-1-Init1_lr0.1_mmt0.9_NoWd_NoAug

train prec1
validation prec1

(h) Learning curves, Init×1

0 50 100 150 200 250 300 350 400
training epochs

40

50

60

70

80

90

100

pr
ec

1

cifar10-wide-resnet28-1-Init5_lr0.1_mmt0.9_NoWd_NoAug

train prec1
validation prec1

(i) Learning curves, Init×5

0 50 100 150 200 250 300 350 400
training epochs

30

40

50

60

70

80

90

100

pr
ec

1

cifar10-wide-resnet28-1-Init10_lr0.1_mmt0.9_NoWd_NoAug

train prec1
validation prec1

(j) Learning curves, Init×10

Figure 16: Fan-in `1 norms of the weights for training on CIFAR-10.

0 50 100 150 200 250 300 350 400
training epochs

0

5

10

15

20

25

cifar10-wide-resnet28-1-Init1_lr0.1_mmt0.9_NoWd_NoAug
f_margin_sub

(a) Natural Label, Init×1

0 50 100 150 200 250 300 350 400
training epochs

5

0

5

10

15

cifar10-corrupt100-wide-resnet28-1-Init1_lr0.1_mmt0.9_NoWd_NoAug
f_margin_sub

(b) Random Label, Init×1

0 50 100 150 200 250 300 350 400
training epochs

0

5

10

15

20

cifar10-wide-resnet28-1-Init10_lr0.1_mmt0.9_NoWd_NoAug
f_margin_sub

(c) Natural Label, Init×10

0 50 100 150 200 250 300 350 400
training epochs

5.0

2.5

0.0

2.5

5.0

7.5

10.0

12.5

cifar10-corrupt100-wide-resnet28-1-Init10_lr0.1_mmt0.9_NoWd_NoAug
f_margin_sub

(d) Random Label, Init×10

0 50 100 150 200 250 300 350 400
training epochs

40

50

60

70

80

90

100

110

cifar10-wide-resnet28-1-Init1_lr0.1_mmt0.9_NoWd_NoAug

weights l2 norm

(e) Natural Label, Init×1

0 50 100 150 200 250 300 350 400
training epochs

50

100

150

200

250

cifar10-corrupt100-wide-resnet28-1-Init1_lr0.1_mmt0.9_NoWd_NoAug

weights l2 norm

(f) Random Label, Init×1

0 50 100 150 200 250 300 350 400
training epochs

426

428

430

432

434

436

438

440
cifar10-wide-resnet28-1-Init10_lr0.1_mmt0.9_NoWd_NoAug

weights l2 norm

(g) Natural Label, Init×10

0 50 100 150 200 250 300 350 400
training epochs

440

460

480

500

520
cifar10-corrupt100-wide-resnet28-1-Init10_lr0.1_mmt0.9_NoWd_NoAug

weights l2 norm

(h) Random Label, Init×10

Figure 17: Functional margins for training on CIFAR-10. Patterns: random labels has smaller margin and larger l2 norm than random labels.
Larger init (×10) leads to smaller margin and larger l2 norm than normal init (×1).

for shallow and deep networks, respectively. The corresponding (excess) expected errors E are

Eshallow ≈
(

n√
M

) m
m+n

(32)

for shallow networks and

Edeep ≈
(

1√
M

) m
m+2

(33)

for deep networks. For the expected error, as for the generalization error, deep networks appear to achieve an exponential gain. The above
observations hold under the assumption that the optimization process during training finds the optimum parameters values for both deep and
shallow networks. Taking into account optimization, e.g. by stochastic gradient descent, requires considering a further error term, but we
expect that the overall conclusions about generalization properties for deep vs. shallow networks should still hold true.

Notice that independently of considerations of generalization, deep compositional networks are expected to be very efficient memories – in
the spirit of hierarchical vector quantization – for associative memories reflecting compositional rules (see Appendix and [35]). Notice that
the advantage with respect to shallow networks from the point of view of memory capacity can be exponential (as in the example after
Equation 29 showing mshallow ≈ 10104

mdeep).

9.2 Empirical results on margin

9.3 SGD is equivalent to a form of Robust Optimization and corresponds to large margin

The claim is that SGD while minimizing the empirical error effectively maximizes robustness to perturbations in the weights (and similarly
in the training data). In particular, section 9.4 shows that this is similar to regularization with a regularizer consisting of a path norm in the
weights of the deep network. In the subsequent section 8.3 we outline results – old and new – showing that robustness yield generalization
bounds that are independent of number of parameters. Unfortunately these bounds are very loose.

In the following sections we argue that flatness in the minimum provided by SGD yields better generalization. We do not have a practical
bound but we present strong arguments based on a a close connection between flatness, robust optimization and regularization.

Let us first introduce a notation to describe the deep networks that we will use in the following sections.

Netwoks and weights

We assume that f is a L-layer neural network with d inputs, trained on z1, ...zd with z = (x, y). We assume one of the components of the
effective input vector x is a dummy input equal to 1 (this allows to drop the parameter b in describing the RELU activity). For convenience
we repeat the definitions in (23), (24), and (25). The input to the first layer is

x0 := x;

the output of layer v − 1 is xv with components

∀v = 1, · · · , L− 1: xvi := [

Nv−1∑
j=1

wv−1
i,,j x

v−1
j]+i = 1, · · · , dv

and

f(x) = [

NL−1∑
j=1

wL−1
j xL−1

j]+.

Notice that if we neglect the RELUs (or equivalently assume that all the RELUs are active), the L layer network with d inputs and one output,
is equivalent to a linear network with a d-dimensional weight vector w̃ =

∑
h,t,j··· w

L−1
1,h · · ·w

2
t,kw

1
k,jw

0
j,i with i = 1, · · · , d. Notice that

||w̃|| is the path norm defined elsewhere [13]. The vector w̃ involved in the path norm has components which are each a sum of monomials
in the weights, each monomial corresponding to a path. Suppose there are a total of D paths. We define ŵ as the D-dimensional vector in
which each component consist of the monomial corresponding to a path and as x̂ the corresponding “augmented” x vector (for instance in
Figure 18 D = d if we assume one RELU per node; with 2 RELUs per node D = 4d). The corresponding “Dpath norm” is ||ŵ||. Thus

f(x) = Λw,xŵx̂ (34)

where Λ is a diagonal matrix with 0, 1 components indication which paths are switched on. Notice that df
dw
≈ 0 around a flat minimum w∗

of f .

9.4 SGDL, RO and generalization

In the next subsection we extend previous results [36] to relate minimizers that corresponds to flatness in the minimum to robustness: thus
SGD performs robust optimization of a certain type. In particular, we will show that robustness to perturbations in multilayer deep networks
is related to regularization (see [36, 37]). We first describe the simplest separable and linear case.

9.4.1 For linear networks and separable data, SGD converges to a large-margin classifier

In linear classification we try to separate the two classes of a binary classification problem by a hyperplaneH = {x : wᵀx+ b = 0}, where
w ∈ Rd. There is a corresponding decision rule of the form y = sign(wᵀx + b) Let us consider the separable condition in which the
decision rule makes no error on the data set. This corresponds to the following set of inequalities

yi(w
ᵀxi + b) > 0, i = 1, · · · , n (35)

We assume that the inequalities are feasible, that is the data are separable. Assume now to impose robustness of the classifier wrt to
perturbations δw in the weights which we assume here to be such that ||δw||2 ≤ ρ||w||2 with ρ ≥ 0. In other words, we require that ∀δw
such that ‖δw‖2 ≤ ρ‖w‖2:

yi((w + δw)ᵀxi + b) ≥ 0, i = 1, . . . , n (36)

Further assume that ‖xi‖2 ≈ 1, then for i = 1, . . . , n, if we let δw = −ρyixi‖w‖2/‖xi‖2,

yi(w
ᵀxi + b) ≥ −yiδwᵀxi = ρ‖w‖2‖xi‖2 ≈ ρ‖w‖2

As a result, an approximate robust counterpart of Equation (35) is

yi(w
ᵀxi + b) ≥ ρ||w||2, i = 1, · · · , n (37)

Maximizing ρ – the margin – subject to the constraints Equation (37) leads to minimizing w, because we can always enforce ρ||w||2 = 1
and thus to

min
w,b
{||w||2 : yi(w

ᵀxi + b) ≥ 1 i = 1, · · · , n} (38)

Notice that the same Equation 38 follows if the maximization is with respect to spherical perturbations of radius ρ around each data point xi.
In either case the resulting optimization problems is equivalent to ard margin SVMs5. Notice that the classification problem is similar to
using the loss function V (y, f(x)) = log(1 + e−yf(x)) which penalizes errors but is otherwise very small in the zero classification error
case. Section 5.2 implies that SGD maximizes flatness at the minimum that is SGD maximizes δw.

In the non-separable case, the hinge loss6 leads to the following robust minimization problem

min
w,b

1

n

n∑
i=1

[1− yi(wᵀxi + b) + ρ||w||2]+. (40)

Note that the robust version of this worst-case loss minimization is not the same as in classical SVM because the regularization term is
inside the hinge loss. Note also that standard regularization is an upper bound for the robust minimum since

min
w,b

1

n

n∑
i=1

[1− yi(wᵀxi + b) + ρ||w||2]+ ≤ min
w,b

1

n

n∑
i=1

[1− yi(wᵀxi + b)]+ + ρ||w||2]. (41)

In the case of the square loss, robust optimization gives with ||δw||2 ≤ ρ||w||2

min
w,b

1

n

n∑
i=1

[(yi − wᵀxi)
2 + ρ2||w||2]+. (42)

The summary here is that depending on the loss function and on the uncertainity set allowed for the perturbations δw one obtains a variety
of robust optimization problems. In general they are not identical to standard regularization but usually they contain a regularization term.
Notice that a variety of regularization norms (for instance `1 and `2) guarantee CVloo stability and therefore generalization. The conclusion
is that in the case of linear networks and linearly separable data, SGD provides a solution closely related to hinge-loss SVM.

5If we start from the less natural assumption that ||δw||∞ ≤ ρ||w||2 with ρ ≥ 0 and assume that each of the d components |(xi)j | ≈ 1, ∀id, then the robust counterpart of
Equation 35 is, since (δw)ᵀx ≤ ||(δw)ᵀ||`∞ ||x||`1 ,

yi(w
ᵀ
xi + b) ≥ (δw)

ᵀ
sup δw = ρ||w||2, i = 1, · · · , n (39)

6The hinge loss V (y, f(x)) = [1− yf(x)]+ , with y binary (used by [37]) is similar to the cross-entropy loss (for classification) V (y, f(x)) = log(1 + e−yf(x)).

9.4.2 Deep networks, SGD, RO and regularization

In the case of deep (convolutional) networks we can only approximate the robust optimization problems described above at a minimum by
using the pseudo-linear representation of a deep networks provided by Equation 34, where Λ depends on the weights and on the input x. For
a deep network the problem around the minimum for the square loss under the assumptions of the previous section reads

min
w

max
(δw)

1

n

n∑
i=1

(yi − fw(xi)
2 (43)

which, since f(x) = Λw,xŵx̂, leads to

min
ŵ

1

n

n∑
i=1

[(yi − ŵᵀΛw,xx̂i)
2 +

1

n
ρ2ŵᵀΛw,xŵ. (44)

Here the diagonal matrix Λ weighs each path by the times it is active over the training set Sn. Of course the perturbation will switch on or
off several of the paths, switching on or off associated RELUs, depending on the training sample yi, (xi. We consider the simple case of
Figure 18, where the number of paths is equal to the dimensionality of the input vector. Let us assume that there are several zero minima in
the square loss, all close to zero loss. Then maximization over δ selects the flattest minima – the ones where perturbation can be largest
without increasing the errors over the training set. Let us assume as before that all the explored minima are at close to zero loss, that is
yi − f(xi) ≈ 0. In this case the robust optimum is close to the minimum of a weighted regularization problem.

In fact the penalization term above is an upper bound so that

min
w

max
(δw)

1

n

n∑
i=1

(yi − fw+δw(xi)
2 ≤ min

ŵ

1

n

n∑
i=1

[(yi − ŵᵀΛw,xx̂i)
2 +

1

n
ρ2ŵᵀΛw,xŵ. (45)

More in general

Proposition 2. For a compositional network with several units per node the following holds

min
ŵ

1

n

n∑
i=1

[(yi−ŵᵀΛw,xx̂i)
2+

1

n
ρ2ŵᵀŵ ≤ min

w
max
δ∈N

1

n

n∑
i=1

V (yi, f(xi−δ)) ≤ min
ŵ

1

n

n∑
i=1

V (yi, f(xi))+c|ŵ| ≤ min
ŵ

n∑
i=1

[(yi−ŵᵀΛw,xx̂i)
2+ρ2ŵᵀΛw,xŵ.

(46)
where the lower and upper bounds depend on the assumption that each path is active at least once over the training set.

x1 x2 x3 x4 x5 x6 x7 x8

w1
0 w2

0 w3
0 w4

0 w5
0 w6

0 w7
0 w8

0

w1
1 w2

1 w3
1 w4

1

w1
2 w2

2

Figure 18: Assume that the binary network in the figure has one relu unit per node. The path norm is |ŵ| and ŵ =
w0

1w
1
1w

2
1, w

0
2w

1
1w

2
1, w

0
3w

1
2w

2
1, · · · . If one of the unit is switched off then the two weights in the input to the unit can be put to zero

and one or more of the monomials representing the components of ŵ will be zero. In the case of several units per node, the components of
ŵ will be sum of monomials, some of which can be put to zero if corresponding RELU units are switched off.

It seems likely that we can bound CVloo stability (for any N) and guarantee generalization. This may require to make ρ decrease with N
by controlling the power of a Gaussian noise added to SGD (we assume to be in the SGDL case). In summary we can establish a close
connection between the flatness maximized by SGD, maximizing robustness and regularization but only approximately and only in some
special cases.

Remarks

(a) Original (b) Perturbation 0.05 (c) Perturbation 0.2

Figure 19: Example of an image on the CIFAR-10 training set and its perturbed versions with different perturbation size.

0.0 0.2 0.4 0.6 0.8 1.0
Size of perturbation

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

True Labels
Random Labels

0.00 0.02 0.04 0.06 0.08 0.10
Size of perturbation

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

u
ra

cy

True Labels
Random Labels

Figure 20: Perturbation robustness of models trained by SGD on CiFAR with correct and random labels and then tested on perturbed images.
The right hand side figure is a zoomed-in view of the initial part of the left hand side figure.

• The proposition suggests that a deep network optimized by SGD has bounded weights, uniform stability and generalization. The
associate bounds are independent of the number of parameters.

9.5 Training with random labels, testing with perturbed images

In this section, we empirically compare the robustness of the classifier learned on natural labels and random labels. Specifically, since for
both natural labels and random labels, the models could perfectly fit the labels, we are interested in comparing how the fitted model respond
to small perturbations on the training examples. We define the following notion of perturbation robustness:

Ẽ(f, Sn, γ) =
1

n

n∑
i=1

I[f(xi + γεi) 6= yi] (47)

where Sn = {(xi, yi)}ni=1 is the training set, f is a model that was trained to fit the training set. ε1, . . . , εn are i.i.d. standard Gaussian
vectors. And γ is the size of the perturbation. When the model fits the training set perfectly, Ẽ(f, Sn, 0) = 0.

Figure 19 shows an example of the training image and its perturbed version with different perturbation sizes. Figure 20 shows the perturbation
robustness with models trained on natural labels and random labels. As we can see, the model trained on random labels has slightly worse
robustness than the model trained on natural labels.

9.6 GD and SGD converges to Minimum Norm Solution for Underdetermined Linear System

Consider the following setup: X = (x1, . . . , xn)> ∈ Rn×d are the data points, with d > n. We further assume that the data matrix is of
full row rank: rank(X) = n. Let y ∈ Rn be the labels, and consider the following linear system:

Xw = y (48)

where w ∈ Rd is the weights to find. This linear system has infinite many solutions because X is of full row rank and we have more
parameters than the number of equations. Now suppose we solve the linear system via a least square formulation

L(w) =
1

2n
‖Xw − y‖2 (49)

by using gradient descent (GD) or stochastic gradient descent (SGD). In this section, we will show that both GD and SGD converges to the
minimum norm solution, for the `2 norm. A similar analysis (with fewer details) was presented in [4].

Lemma 3. The following formula defines a solution to (48)

w† , X>(XX>)−1y (50)

and it is the minimum norm solution.

Proof Note since X is of full row rank, so XX> is invertible. By definition,

Xw† = XX>(XX>)−1y = y

Therefore, w† is a solution. Now assume ŵ is another solution to (48), we show that ‖ŵ‖ ≥ ‖w†‖. Consider the inner product

〈w†, ŵ − w†〉 = 〈X>(XX>)−1y, ŵ − w†〉
= 〈(XX>)−1y,Xŵ −X†〉
= 〈(XX>)−1y, y − y〉
= 0

Therefore, w† is orthogonal to ŵ − w†. As a result, by Pythagorean theorem,

‖ŵ‖2 = ‖(ŵ − w†) + w†‖2 = ‖ŵ − w†‖2 + ‖w†‖2 ≥ ‖w†‖2

Lemma 4. When initializing at zero, the solutions found by both GD and SGD for problem (49) live in the span of rows of X . In other
words, the solutions are of the following parametric form

w = X>α (51)

for some α ∈ Rn.

Proof

The gradient for (49) is

∇wL(w) =
1

n
X>(Xw − y) = X>e

where we define e = (1/n)(Xw − y) to be the error vector. GD use the following update rule:

wt+1 = wt − ηt∇wL(wt) = wt − ηtX>et
Expanding recursively, and assume w0 = 0. we get

wt =

t−1∑
τ=0

−ητX>eτ = X>
(
−
t−1∑
τ=0

ητeτ

)
The same conclusion holds for SGD, where the update rule could be explicitly written as

wt+1 = wt − ηt(x>itw − yit)xit

where (xit , yit) is the pair of sample chosen at the t-th iteration. The same conclusion follows with w0 = 0.

Q.E.D.

Theorem 4. Let wt be the solution of GD after t-th iteration, and wt be the (random) solution of SGD after t-th iteration. Then ∀ε > 0,
∃T > 0 such that

L(wt) ≤ ε, EL(wt) ≤ ε
where the expectation is with respect to the randomness in SGD.

Corollary 1. When initialize with zero, both GD and SGD converges to the minimum-norm solution.

Proof Combining Lemma 4 and Theorem 4, GD is converging wt → w? = X>α? as t→∞ for some optimal α?. Since w? is a solution
to (48), we get

y = Xw? = XX>α?

Since XX> is invertible, we can solve for α? and get

w? = X>α? = X>(XX>)y = w†

Similar argument can be made for SGD with expectation with respect to the randomness of the algorithm.

9.6.1 Weight Perturbations

We could define in different ways the basic perturbations of the data that we consider 7 but here we assume independent perturbation of each
component of a vector of perturbations δi = δ which is the same for each example xi.

Suppose that there is zero-minimizer f∗ of the empirical loss with parameters w∗, yielding ISn(w∗) = 0. Suppose further that the minimizer
is ∆w-flat, e.g. ISn(w∗ + ∆w) = 0, where ∆w is a vector of perturbations of the weights w∗ and min |∆wi| ≥ C.

For an illustration of the basic idea, consider just the first layer with P = 1. Then calling x0j = xj we obtain with ∆ being a percentage
perturbation of w

x1i =

2∑
j=1

(w0
i,j ±∆wj)xj =

2∑
j=1

(w0
i,j(xj ±∆xj) (52)

implying that a delta percentage of weight perturbation corresponds to the same percentage of x-data perturbation, that is to ∆-robustness.

Consider now the case of a multilayer network with a graph corresponding to a binary tree and P = 1. Then a “flatness” ±∆ in all weights –
we now consider a fraction ∆ of the maximum range of the weights (which are between π and−π) – corresponds to the following maximum
perturbation in the contribution of component xj to the output (when it is not zero because of ReLU)

[

L∏
d=1

(1± (∆)wdj)]xj . (53)

Equation 53 has to be compared with the effect of perturbed data

[

L∏
d=1

wdj](1±∆)xj . (54)

This suggests the following

Conjecture 3. Invariance of the empirical error to perturbations of all weights are equivalent to larger, identical perturbations of all
training examples xi with i = 1, · · · , n.

As an example, supposed there are d = 8 layers and that ∆ = 1
10

. Then this tolerance in all the weights corresponds to a tolerance in the
data perturbation of a factor 2 (1.1 vs 2.14). In addition, note also that there are usually many more weights than data. This relatively small
δ “flatness” of the zero-minimizer in weight space yields large robustness in data space (in this picture, to the same perturbations for all data
points). The product of the weights that appears in the equations above is related to the path norm that we will discuss later (see also Figure
18).

9.7 Stability of SGD

In this section we discuss the equivalence of the following properties (some have appeared in the literature):

• flat minima in the weights of the minimizer

• stability of the minimizer wrt perturbations of weights

• stability wrt perturbations of the data

• fewer bits needed for parameters

7

Definition 4. A setN0 ∈ Rn is called an Atomic Uncertainity Set if

1. 0 ∈ N0

2. For any w0 ∈ Rn supδ∈N0
[wᵀ
oδ] = supδ′∈N0

[−w0δ
′] <∞

Based on this [37] then define more complex models of perturbations in which the behavior across multiple samples i = 1, · · · , n is controlled.

• “small” local complexity (Ramacher averages) of functions that are flat

• stability of SGD in the sense of [38, 39]

Stability plays an important role in several different situations such as in inverse problems, in dynamical systems – under the form of
“structural stability” – and in learning – as stability under perturbations of the training set. The intuition is that these are very similar forms of
stability but formally the different cases requires different definitions and their mathematical equivalence remains in general elusive.

We discuss here at the intuitive level the relation between different types of perturbations in the specific case of SGD, that we define as
before as

ft+1 = ft − γn∇V (ft, zt), (55)

• SGD can be written as Gradient Descent with additive noise
We rewrite

∇V (ft, zt) = ∇ISn (ft) + ξt (56)

As we discussed earlier, the SGD update step is then rewritten as the following Langevin equation

ft+1 = ft − γn(∇ISn(ft) + ξt) (57)

• Perturbing the training examples in SGD – which we described in the context of perturbation stability or robustness – is equivalent to
a pointwise change in the noise process in the equivalent noisy GD Suppose that zj is replaced by z′j for a given j in Sn. Then U(ft)
is replaced by U ′(ft) = U(ft)− V (ft, zj) + V (ft, z

′
j) = U(ft) + ξ′j where ξ′j is a “noise” term.

• Perturbing the hypothesis ft, that is the weights, is equivalent to adding an additional noise term to noisy GD
Suppose the parameters w are by replacing them component-wise with w+ τw. Then∇wU(ff)→ ∇wU(ff)(I+ τ) = ∇wU(ff) +
ξ”.

The three cases end up being equivalent to noisy GD with slightly different noise terms. Notice that GD and SGD converge to a minimum
norm solution in the linear degenerate case.

We conjecture that under some assumptions each of the cases above can be transformed in another one. This means that GD with replacement
can be seen as noisy GD and this in turn may be seen under appropriate conditions as GD with replacement. The relevance of this observation
is that stability wrt data is thus ensured by the presence of some form of noise in GD such as provided by the SGD update.

Notice that convergence to the same minima or to a class of equivalence is a form of structural stability of the dynamical system associated
with SGD. Our intuition is that “repeat SGD” generalizes because the “noisy” update of the gradient makes it equivalent to “pure SGD” for
N →∞ in Sn.

• The key to generalization by “repeat SGD” is the intrinsic noise associated with SGD. This is different wrt GD. Because of properties
of the Boltzman distribution in high dimensions, SGD finds with high probability structurally stable flat zeros (that is robust, wrt
to perturbations of the weights). These via intrinsic regularization of the gradient descent steps coincide with stable solutions that
generalize.

• The relative amount of noise can be controlled by changing the size of the minibatches.

• SGD solutions generalize because each example zn with its repetitions (multiple passes) provides effectively different data points
because of the noise term. This is formally correct if we could prove that perturbing the sample zn is equivalent to a change in the
noise term which does not affect the properties of SGD and associated theorems. Then the pure SGD theorem applies and convergence
to the expected risk is guaranteed.

• Another intuition is that the solutions found by SGD are not just zeros of the polynomial set of equations of Theory II but “stable zeros”
because of the noise and the fact that SGD is a Langevin equation converging in probability to the minima of the cost functions and
preferring the stable ones.

9.8 Compositionality Improves Generalization Bounds

It has been long recognized that capacity of the set of neural networks can be controlled not only through the number of units (and, hence, the
VC dimension) but also through the size of the weights [16]. In particular, the argument of [40] leads to a bound on the generalization error in
terms of `1-norms of the weights into each neuron. If each weight in the network is bounded, the result yields a non-vacuous generalization

guarantee for any network with number of incoming connections into each neuron being o(n), the sample size. For completeness, we
provide the statement of [40] here, with minor modifications.

Define
F1 =

{
x 7→ 〈w1, x〉 : ‖w1‖1 ≤ B1

}
(58)

and

Fi =

{
x 7→

∑
j

wijσ(fj(x)) : fj ∈ Fi−1, ‖wi‖1 ≤ Bi

}
(59)

for i ≥ 2, and suppose x ∈ X ⊂ [−1, 1]d.

Lemma 5. Consider a k-layer neural network defined recursively as in (59). Let V : R×{±1} → R be 1-Lipschitz loss function, and
write V (f, z) = V (f(x), y) for z = (x, y) ∈ X × {±1}. Let σ : R→ R be 1-Lipschitz and σ(0) = 0.8 Then

E sup
f∈Fk

{
EV (f, Z)− 1

n

n∑
t=1

V (f, Zt)

}
≤ 2ER̂(Fk) ≤

√
2 log d ·

∏k
i=1(2Bi)√
n

, (60)

where R̂(Fk) are empirical Rademacher averages of Fk.

Proof. Using the standard symmetrization argument followed by contraction, the uniform deviations in (60)

2E sup
f∈Fk

1

n

n∑
t=1

εtV (f, Zt) ≤ 2E sup
f∈Fk

1

n

n∑
t=1

εtf(Xt). (61)

Now, for any i ≥ 2,

R̂(Fi) = E sup
fj∈Fi−1,‖wi‖≤Bi

1

n

n∑
t=1

εt
∑
j

wijσ(fj(Xt)) ≤ 2BiR̂(Fi−1) (62)

where the last step uses the Cauchy-Schwartz inequality. Finally,

R̂(F1) = B1

∥∥∥∥∥ 1

n

n∑
t=1

εtXt

∥∥∥∥∥
∞

≤ B1

√
2 log d

n

using the usual estimates.

Lemma 5, together with the empirical observation that neural networks can be trained to achieve zero error on the data, implies that the
expected risk of the minimizer is converging to zero. Lemma 5 assumes that V is Lipschitz. However, the standard argument from the theory
of large margin classifiers yields a guarantee on the expected zero-one loss as well, in terms of the Rademacher averages of the class and the
empirical margin. This result, which can be found in [15, Theorem 2] (see also [41] for the present version), is stated below:

Theorem 5. For all δ > 0, with probability at least 1− δ, for all f ∈ Fk and γ > 0,

P (Y f(X) ≤ 0) ≤ card(i : Yif(Xi) < γ)

n
+

4

γ
ER̂(Fk) +

√
log log(4C/γ)

n
+

√
log δ−1

2n
, (63)

where C ≥ supf,x f(x).

The bound of (5) on Rademacher averages can be used in Theorem 5 to obtain an upper bound on the expected zero-one loss of a solution
that has a large margin γ on the data. Notice that γ optimizing the above bound is based on the empirical margin for the particular draw of
the data.

We observe that the covering numbers are much better for compositional networks than for densely connected networks consistently with
section 9.1; the covering number are an upper bound to the Radamacher averages.

8This assumption can be easily removed.

9.9 Compositionality and Multiclass Tasks

Most of the succesfull neural networks exploit compositionality not only to avoid the curse of dimensionality but also for better gen-
eralization in an important way (see [42]). Suppose that the mappings to be learned in a family of classification tasks (for instance
classification of different object classes in Imagenet) may be approximated by compositional functions such as f(x1, · · · , xn) =
hl · · · (h21(h11(x1, x2), h12(x3, x4)), h22(h13(x5, x6), h14(x7, x8) · · ·)) · · ·), where hl depends on the task (for instance to which object
class) but all the other constituent functions h are common across the tasks. Under such an assumption, multi-task learning, that is training
simultaneously for the different tasks, forces the deep network to “find” common constituent functions. Multi-task learning has theoretical
advantages that depends on compositionality: the sample complexity of the problem can be significantly lower (see [43]). The Maurer’s
approach is in fact to consider the overall function as the composition of a preprocessor function common to all task followed by a
task-specific function. As a consequence, the generalization error, defined as the difference between expected and empirical error, averaged
across the T tasks, is bounded with probability at least 1− δ (in the case of finite hypothesis spaces) by

1√
2M

√
ln|H|+

ln|G|+ ln(1
δ
)

T
, (64)

where M is the size of the training set,H is the hypothesis space of the common classifier and G is the hypothesis space of the system of
constituent functions, common across tasks.

The improvement in generalization error because of the multitask ‘structure can be in the order of the square root of the number of tasks
(in the case of Imagenet with its 1000 object classes the generalization error may tyherefore decrease bt a factor ≈ 30). It is important to
emphasize the dual advantage here of compositionality, which a) reduces generalization error by decreasing the complexity of the hypothesis
space G of compositional functions relative the space of non-compositional functions and b) exploits the multi task structure, that replaces
ln|G| with ln|G|

T
.

