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An open problem around deep networks is the apparent absence of over-fitting despite large over-parametrization
which allows perfect fitting of the training data. In this paper, we explain this phenomenon when each unit
evaluates a trigonometric polynomial. It is well understood in the theory of function approximation that ap-
proximation by trigonometric polynomials is a “role model” for many other processes of approximation that
have inspired many theoretical constructions also in the context of approximation by neural and RBF networks.
In this paper, we argue that the maximum loss functional is necessary to measure the generalization error. We
give estimates on exactly how many parameters ensure both zero training error as well as a good generalization
error, and how much error to expect at which test data. An interesting feature of our new method is that the
variance in the training data is no longer an insurmountable lower bound on the generalization error.
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1 Introduction

The main problem of machine learning is the following. Given data (x, y) sampled from an unknown probability
distribution µ, the goal is find a function P that minimizes the generalization error Eµ((y−P )2) among all functions
in some function class that is thought to represent the prior information about the distribution. Since we do not
know µ, classical machine learning paradigm expresses the generalization error into three components: the variance,
the approximation error, and the sampling error. The variance is a lower bound on the generalization error, and
the estimation typically focuses on the other two errors. The sum of these two is given by E((f − P )2), where the
expectation is with respect to the marginal distribution of x and the target function f is the conditional expectation
of y given x. If the marginal distribution of x is known, then the split between approximation and sampling errors
is no longer necessary, and one can obtain estimates and as well constructions directly from characteristics of the
training data (e.g., [5, 7, 11]). In the classical paradigm where this distribution is not known, the approximation error
decreases as the number of parameters in P increases to ∞. However, this makes the empirical risk minimization
problem harder to solve; making it essential to choose the number of parameters in P to balance the two errors.
In turn, this explains a commonly observed phenomenon that if one achieves a zero empirical risk on the training
data by over-parametrized model P , the test error is generally not good.

There are several recent papers that demonstrate that this phenomenon is often not observed (e.g., [4, 13, 16,
19, 1, 15]). One of the vexing problems around deep learning is to explain the generalization error; why do the
deep learning models, despite being highly over-parameterized, still predict well? It is suggested in [18] that a new
approach to studying the notion of generalization error is required for understanding deep learning.

In the study of approximation error in deep learning, it is observed in [12] that the compositional structure of
the target function can be utilized effectively via a property called good propagation of error to obtain substantially
better error bounds allowing us to overcome the curse of dimensionality observed in shallow networks. However, it is
essential to change the learning paradigm for this purpose drastically. For example, suppose we wish to approximate
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a function f∗ = f(f1(x1), f2(x2)) by a network of the form P ∗ = P (P1(x1), P2(x2)), where x1,x2 ∈ Rd. Without
the compositional structure, f∗ has to be treated as a function of 2d variables. The compositional structure allows
us to treat the approximation problem as a set of three approximation problems: approximating functions f1, f2
as functions of d variables each, and a function f of 2 variables.

How do we define generalization error? Defining it in terms of the original distribution of ((x1,x2), y) is not
sensitive to the compositional structure. On the other hand, the input (f1, f2) to the function f is not the same
(even may not have the same distribution) as the input (P1, P2) to the approximation P .

Our new paradigm therefore proposes to measure the errors in the uniform norm rather than searching for
appropriate L2 norms suitable for the compositionality structure of the target function. Thus, we define the
generalization error as the maximal error between the target function and the model at all possible test points.
One consequence is that the decomposition of the generalization error into three parts breaks down. Therefore,
new ideas are required to achieve the approximation in terms of the training data alone. The approximation errors
themselves are studied in [12, 8], but the techniques suggested there require the data points xj to be sufficiently
dense in the domain (Euclidean space, sphere, cube, etc.). When the data is not dense, it is clearly not expected
to get a good approximation on the whole domain. However, if the data does become dense on some subset of the
domain, one can expect a good approximation at points close by to the training data. With the new definition of
generalization error, the variance is no longer an insurmountable lower bound on the generalization error.

In this paper, we initiate a systematic theoretical study of the relationship between the structure of the data and
the extent of over-parametrization needed to allow the phenomena described above. It is well understood (e.g. [14,
6]) that as far as the number of parameters is concerned, approximation by neural networks with smooth activation
functions is equivalent to that by algebraic polynomials. Moreover, it is also well known that approximation
of a function f on the Euclidean cube [−1, 1]q by algebraic polynomials is equivalent to that of the function
f◦(θ) = f(cos θ1, · · · , cos θq) defined on the q-dimensional torus by trigonometric polynomials of the same degree.
The theory of function approximation by trigonometric polynomials serves a “role model” for every other process
of approximation. In [10, 9, 11], this theory has been used to suggest some explicit constructions and bounds in
the context of approximation by neural and RBF networks. Therefore, we will focus in this paper on networks
evaluating trigonometric polynomials.

After introducing the notation in Section 2, we will discuss our main results in the case of shallow networks in
Section 3. Our view of deep networks will be discussed in Section 4, and the analogues of the theorems in Section 3
in this context will be proved. The proofs of the results in Section 3 are given in Section 5 and Section 6.

2 Notation

Let q ≥ 1 be an integer, Tq be the q dimensional torus (=Rq/(2πZ)q). For x,y ∈ Tq,

|x− y| = max
1≤i≤q

|(xi − yi)( mod 2π)|.

For multi-integer k, |k|p is `p norm of k. If p = 2, we will write |k| in place of |k|2.
The space of all continuous functions f : Tq → R, equipped with the supremum norm will be denoted by C∗

(or C∗(Tq) if we wish to emphasize the input dimension to the functions). The norm on C∗(Tq) will be denoted by
‖ · ‖ or ‖ · ‖q if it is important to identify the dimension. For n > 0, the space Hqn is defined by

Hqn = span{exp(ik · ◦) : |k| < n}.

The dimension of Hqn is ∼ nq. If f ∈ C∗(Tq), then its degree of approximation from Hqn is defined by

En(f) = En(q; f) := inf
T∈Hq

n

‖f − T‖.

When our models are trigonometric polynomials in Hqn, the quantity En(f) denotes the ideal generalization error
for the target function f . It is well known that there exists a trigonometric polynomial for which this error bound is
attained. However, this polynomial of best approximation is neither easy nor worthwhile to construct. It is known
to have many bad properties; for example, the operator of best approximation is non-linear, and very sensitive to
lack of smoothness of f even at one point.

For any finite subset C ⊂ Tq, we define its minimal separation by

η(C) = min
x,y∈C,x6=y

|x− y|. (2.1)
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We assume a training data of the form D = {(xj , yj)}Mj=1, where C = {xj}Mj=1 ⊂ Tq, and yj = f(xj) + εj for some
f ∈ C∗. We denote

ε = max
1≤j≤M

|εj |. (2.2)

The quantity ε plays the role of variance in our theory in this paper.
The constant convention
The symbols c, c1, · · · will denote generic positive constants, depending on such fixed parameters of the problem as
q, h, G, and S (to be introduced later), etc. and other quantities explicitly indicated, but their value may different
at different occurrences, even within a single formula. The notation A ∼ B means that c1A ≤ B ≤ c2A.

3 Shallow networks

Our first theorem in this section shows the connection between the structural properties of the training data and
the existence of a trigonometric polynomial T#

N (D) that can interpolate the noisy data (i.e., achieve a zero training
error), as well as achieve a good generalization error in the sense defined in Section 1.

Theorem 3.1 Let f ∈ C∗. There exists B > 0 with the following property: for N ≥ Bη(C)−1, there exists

T#
N (D) ∈ HqN such that

T#
N (D)(xj) = yj , j = 1, · · · ,M, (Zero training error) (3.1)

and
‖f − T#

N (D)‖ ≤ c
{
ε+ EN/2(f)

}
. (Good generalization error). (3.2)

Remark 3.1 A volume comparison argument shows that the number of data points M satisfies M ≤ cη(C)−q.
Thus, Theorem 3.1 shows that for a right configuration of the training data, a good generalization error as well
as zero training error can be achieved by choosing the number of parameters proportional to the number of data
points. It is demonstrated in [1] that for RBF approximation, this phenomenon seems to hold in many applications
with the number of parameters exactly equal to the number of data points.

Remark 3.2 In practice, the training data is high dimensional and sparse; i.e., η(C) is large. The requirement that
N ≥ Bη(C)−1 is therefore satisfied with moderate degrees N .

Remark 3.3 A curious feature of Theorem 3.1 is that one obtains the bound (3.2) on the generalization on the
entire torus Tq without requiring that the training data C be “dense” in Tq. Of course, Theorem 3.1 is not
constructive. The proof of this theorem shows that the polynomial T#

N actually utilizes also the Fourier coefficients
of the target function in addition to the information contained in D.

Clearly, one cannot construct T#
N (D) based only on the training data C, unless C is sufficiently dense on Tq. If we

anticipate a scenario where the training data sets become denser and denser on some compact subset K ⊂ Tq, then
we cannot expect convergence of trigonometric polynomials that interpolate a noisy data, where the noise level does
not decrease as well. The following discussion suggests a construction that keeps both training and generalization
errors under control.

The space W ∗ = W ∗(Tq) consists of all continuously differentiable functions f ∈ C∗. We define

‖f‖W∗ = ‖f‖W∗(Tq) =

q∑
j=1

‖Djf‖. (3.3)

For n > 0 and T ∈ Hqn, let

Rn(T ) = max
1≤j≤M

|yj − T (xj)|+
1

n
‖T‖W∗ . (3.4)

Theorem 3.2 Let f ∈W ∗, B be as in Theorem 3.1, and N ≥ Bη−1. Then

min
T∈Hq

N

RN (T ) ≤ c
{
ε+

1

N
‖f‖W∗

}
. (Good training error) (3.5)
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Let T ∗(D) = arg min
T∈Hq

N

RN (T ), x ∈ Tq, and δ = min
1≤j≤M

|x− xj |. Then

|f(x)− T ∗(D)(x)| ≤ c(1 +Nδ)

{
ε+

1

N
‖f‖W∗

}
. (Good generalization error). (3.6)

Remark 3.4 The estimate (3.6) shows that if x is very close to the training data so that Nδ < 1, then the
generalization error at x is of the same order of magitude as the loss in the training data measured by RN (T ∗).
As remarked earlier in Remark 3.2, we have greater liberty in choosing a large N when the data is sparse. To take
advantage of this fact, let x be such that Nδ ≥ 1. Then (3.6) can be reformulated in the form

|f(x)− T ∗(D)(x)| ≤ cδ {Nε+ ‖f‖W∗} . (3.7)

The term δ‖f‖W∗ is clearly a customary bound from numerical analysis in view of the mean value theorem. If
ε ≤ η(C)‖f‖W∗ , it is possible to choose N so that error bound is cδ‖f‖W∗ . It is interesting to note that in the new
paradigm, the variance in the dependent variable is no longer a lower bound on the generalization error; one can
reduce the noise with sufficient over-parametrization.

Remark 3.5 It is well known (cf. [20, Chapter X, Theorem 7.28] for the univariate case) that for any T ∈ HqN ,

‖T‖ ∼ max
|k|∞≤3N−1

∣∣∣∣T (2πk

3N

)∣∣∣∣ . (3.8)

Therefore, the term ‖T‖W∗ in regularization functional Rn(T ) can be calculated in terms of the Fourier coefficients
of T via matrix vector multiplications involving the discrete evaluations of DjT as in (3.8). The results are not
affected except for the actual values of the constants involved.

4 Deep networks

The following discussion about the terminology about the deep networks, including Figure 1, is based on the
discussion in [12], and elaborates upon the same.

Let G be a directed acyclic graph (DAG), with the set of nodes V . A G-function is defined as follows. The
in-edges to each node of G represents an input real variable. For each node v, we denote its in-degree by d(v).
The node v itself represents the evaluation of a real valued function fv of the d(v) inputs. The out-edges fan out
the result of this evaluation. Each of the source node obtains an input from some Euclidean space. Other nodes
can also obtain such an input, but by introducing dummy nodes, it is convenient to assume that only the source
nodes obtain an input from the Euclidean space. The set of all source nodes of G will be denoted by S (or S(G) if
necessary).

We note that if q is the number of source nodes in G, a G–function is a function on Rq. Viewed only as a
function on Rq, it is not clear whether two different DAG structures can give rise to the same function. Even if we
assume a certain DAG, it is not clear that the choice of the constituent functions is uniquely determined for a given
function on Rq. For our mathematical analysis, we therefore find it convenient to think of a G–function as a set of
functions f = {fv : Rd(v) → R}v∈V , rather than a single function on Rq. The individual functions fv will be called
constituent functions.

For example, the DAG G in Figure 1 represents the compositional function

f∗(x1, · · · , x9) = h19(h17(h13(h10(x1, x2, x3, h16(h12(x6, x7, x8, x9))), h11(x4, x5)),

h14(h10, h11), h16), h18(h15(h11, h12), h16)) (4.1)

The G-function is {h10, · · · , h19 = f∗}.
We assume that there is only one sink node, v∗ (or v∗(G)) whose output is denoted by f∗. Technically, there are

two functions involved here: one is the final output as a function of all the inputs to all source nodes, the other is the
final output as a function of the inputs to the node v∗. We will use the symbol f∗ to denote both with comments on
which meaning is intended when we feel that it may not be clear from the context. A similar convention is followed
with respect to each of the constituent functions as well. For example, in the DAG of Figure 1, the function h14
can be thought of both as a function of two variables, namely the outputs of h10 and h11 as well as a function of
five variables x1, · · · , x5.

4



f*

h19

h18h17

h15h14h13

h11h10

h16

h12

x1 x2 x3 x4 x5

x6 x7 x8 x9

Figure 1: An example of a G–function (f∗ given in (4.1)). The vertices of the DAG G are denoted by red dots. The
black dots represent the input to the various nodes as indicated by the in–edges of the red nodes, and the blue dot
indicates the output value of the G–function, f∗ in this example.

In this paper, we are interested only in the case where each of the inputs to each of the source node is in T rather
than R. Although this is no longer true for the non-source nodes, it is possible to accomplish this in the case when
each of the constituent functions is continuous, as follows. Let fv be one of the constituent functions. With a re-
normalization, we may assume that the range of fv is a subset of [−1, 1]. Then the function f◦v (x) = arccos(fv(x)),
extended to T as an even function, is a function whose range is a subset of T. Rather than complicating our
notations, we will therefore assume in this paper that the domain of each constituent function is a torus, and the
range is a subset of T. In particular, we may assume that every constituent function fv ∈ C∗(Td(v)).

We adopt the convention that for any function class X(Td), the class G-X denotes the set of G functions f =
{fv}v∈V , where each constituent function fv ∈ X(Td(v)). We define

‖f‖G,X =
∑
v∈V
‖fv‖X(Td(v)). (4.2)

Thus, for example, G-W ∗ is the set of all G functions f = {fv}v∈V , where each constituent function fv ∈ X(Td(v)),
and we write

‖f‖G,W∗ =
∑
v∈V
‖fv‖W∗(Td(v)).

The symbol G-HN denotes the set of G functions {Tv}v∈V , where each Tv ∈ Hd(v)N , and for a G function f = {fv}v∈V ,

EN,G(f) =
∑
v∈V

EN (d(v); fv). (4.3)

To make precise the various inputs to the constituent functions, we introduce some conventions. We assume an
enumeration of V such that S = {v1, · · · , vs}, q =

∑s
j=1 d(vj), (i.e., the source nodes appear before other nodes).

The input x can be viewed as a vector in Rq, but it is sometimes convenient to think of it as a set of its components
(ignoring the order). This set may then be partitioned as x = {xv1 , · · · ,xvs} so that xvj ∈ Rd(vj) (again with the
dual interpretation). Correspondingly, we define the sets

Cvj = {(x)vj : x ∈ C}.
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Thus, Cvj is the training data “seen” by the source node vj . This notion is extended recursively to other nodes of
G. Let v not be a source node, u1, · · · , ud(v) be the children of v, Cu1 , · · · , Cud(v)

be the training data seen by these
nodes. Thus, for any x ∈ C, the components given by (x)uj

are seen by uj .

Cv =
{

(fu1
((x)u1

), · · · , fud(v)
((x)ud(v)

) : x ∈ C
}
.

For example, in the DAG of Figure 1, the children of h14 are h10 and h11. For each x ∈ R9, h10 sees the components
(x1, x2, x3), while h11 sees the components (x4, x5). We have

Ch10
= {((x)1, (x)2, (x)3) : x ∈ C}, Ch11

= {((x)4, (x)5) : x ∈ C},
Ch14

= {((h10((x)1, (x)2, (x)3), h11((x)4, (x)5)) : x ∈ C}

The analogue of Theorem 3.1 for deep networks naturally requires a condition on the constituent functions so as
to be able to keep track of the minimal separations among the inputs to the different nodes. A function f : Td → R
is said to be bi-Lipschitz if there exists a positive constant c(f) > 0 such that

1

c(f)
|x− y| ≤ |f(x)− f(y)| ≤ c(f)|x− y|, x,y ∈ Tq. (4.4)

The analogue of Theorem 3.1 is the following.

Theorem 4.1 Let G be a DAG with source nodes S = {v1, · · · , vs} and sink node v∗. Let f = {fv}v∈V be a
G-function such that each of the constituent functions is bi-Lipschitz. Let η = min

1≤j≤s
ηj(Cvj ), d = minv∈V d(vj).

There exists C = C(f) > 0 with the following property: for N ≥ C(f)η−1, there exists T#
N (D) ∈ G-HN such that

(T#
N (D))v∗(xj) = yj , j = 1, · · · ,M, (Zero training error) (4.5)

and
‖f − T#

N (D)‖G ≤ c
{
ε+ EN/2,G(f)

}
. (Good generalization error). (4.6)

Proof of Theorem 4.1. Since each of the functions fv is bi-Lipschitz, η(Cv) ≥ cη for each v ∈ V . Therefore,

Theorem 3.1 implies that for each non-sink node v, there is T#
v ∈ Hd(v)N satisfying

T#
v (x) = fv(x), x ∈ Cv, ‖fv − T#

v ‖ ≤ cEN/2(d(v); fv). (4.7)

Similarly, there is T#
v∗ ∈ HN (d(v∗)) that satisfies (thought of as a function of all the inputs to the network)

T#
v∗(xj) = T#

v∗((xj)v∗) = yj , j = 1, · · · ,M, (4.8)

and (thought of as a function on Td(v∗))

‖fv∗ − T#
v∗‖ ≤ c

{
ε+ EN/2(d(v∗); fv∗)

}
. (4.9)

Then T#
N = {T#

v } ∈ G-HN . The equation (4.8) is the same as (4.5). Since each fv is Lipschitz continuous,
the estimate (4.6) follows from (4.7) and (4.9) by a repeated application of triangle inequality (good propagation
property, cf. [12, Proof of Theorem 2.1]). �

The analogue of Theorem 3.2 is similar; but one has to take into account the fact that one does not know
the constituent functions. Nevertheless, knowing the DAG structure, one can construct a DAG trigonometric
polynomial. For n > 0 and T ∈ G-Hn, let

Rn,G(T ) = max
1≤j≤M

|yj − Tv∗(xj)|+
1

n
‖T‖W∗,G . (4.10)

In this definition, it is understood that Tv∗ is thought of as a function of the q-dimensional vector x, but is computed
using the all the constituent functions in T using DAG structure prescribed by G.

Theorem 4.2 Let G be a DAG with source nodes S = {v1, · · · , vs} and sink node v∗. Let f = {fv}v∈V ∈ G-W ∗,
and each of the constituent functions be bi-Lipschitz. Let N be as in Theorem 4.1. Then with the notation as in
that theorem,

min
T∈G-HN

RN,G(T ) ≤ c
{
ε+

1

N
‖f‖W∗,G

}
. (Good training error) (4.11)
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Let x ∈ Tq, and δ = min
1≤j≤M

|x− xj |, and T ∗(D) = arg min
G-HN

RN,G(T ), then

|f(x)− (T ∗(D))v∗(x)| ≤ cNδ
{
ε+

1

N
‖f‖W∗

}
. (Good generalization error). (4.12)

Proof of Theorem 4.2. This proof is essentially the same as that of Theorem 3.2. We point out some con-
siderations required in the details which are different. Since f ∈ G-W ∗, the simultaneous approximation theorem
Corollary 6.1 holds for each fv. We may assume that the perturbation exists only at the sink node, and the rest of
the data is exact. Finally, we use the good propagation property. �

Remark 4.1 The theorems in this section indicate that the superiority of deep learning comes from two factors.
One is that the compositional structure of the target function allows us to study the problem in a cascade of low
dimensional problems. The other is that this structure might allow us to sparsify the training data as we move up
the cascade.

5 Proof of Theorem 3.1.

The proof depends upon the construction and properties of a highly localized trigonometric polynomial kernel.
Let h : R→ [0, 1] be an infinitely differentiable, even function such that h(t) = 1 if |t| ≤ 1/2, h(t) = 0 if |t| ≥ 1.

We define

ΦN (x) =
∑
k∈Zq

h

(
|k|
N

)
exp(ik · x), x ∈ Tq, N > 0. (5.1)

If f ∈ C∗, the Fourier coefficients of f are defined by

f̂(k) :=
1

(2π)q

∫
Tq

f(x) exp(−ik · x)dx, k ∈ Zq. (5.2)

For f ∈ C∗, we define

σN (f)(x) =
∑
k∈Zq

h

(
|k|
N

)
f̂(k) exp(ik · x), x ∈ Tq, N > 0. (5.3)

We note that the sums in both (5.1) and (5.3) are finite sums, although they are written as infinite sums for
convenience of notation.

The following proposition summarizes some essential properties of these kernels and operators.

Proposition 5.1 Let S > q be an integer, 1 ≤ p ≤ ∞.
(a) For N ≥ 1,

|ΦN (x)| ≤ cNq

max(1, (N |x|)S)
, , x ∈ Tq, (5.4)

and
|ΦN (0)| ≥ cNq. (5.5)

(b) If C = {x1, · · · ,xM}. There exists a constant B > 0 with the following property: if N ≥ Bη(C)−1 then then for
x ∈ Tq,

M∑
j=1

|ΦN (x− xj)| ≤ cNq. (5.6)

and ∑
j:|xj−x|≥η

|ΦN (x− xj)| ≤ (1/2)ΦN (0) = (1/2)ΦN (x− x) ≤ cNq. (5.7)

(c) If T ∈ HqN/2 then σN (T ) = T . Further,

‖σN (f)‖ ≤ c‖f‖, f ∈ C∗. (5.8)

Consequently,
EN (f) ≤ ‖f − σN (f)‖ ≤ cEN/2(f), f ∈ C∗. (5.9)

7



Proof. Part (a) is proved in [2, Theorem 6.1]. It is not difficult to verify (cf. [7, Lemma 5.3]) that for any x ∈ Tq
and r > 0,

|{` : |x` − x| ≤ r}| ≤ cη(C)−q(rq + η(C)q).

The estimate follows from this fact and [7, Proposition 5.1, Definition 4.1], taking into account that N ≥ η−1.
The estimate (5.7) follows from (5.6) and (5.5) taking into account the fact that there can be at most one xj with
|x − xj | < η(C)/2. The estimate (5.8) is given in [2, Corollary 6.1] (The notation in [2] is different from the one

used here). If T ∈ HqN/2, then T̂ (k) = 0 if |k| ≥ N/2, while h(t) = 1 if |t| ≤ 1/2. It follows from the definition (5.3)

that σN (T ) = T . Together with (5.8), this leads to (5.9). �
A consequence of the above proposition is the following (cf. [7, Proposition 6.1]).

Lemma 5.1 Let a,b ∈ RM , and

M∑
j=1

ajΦN (x` − xj) = b`, ` = 1, · · · ,M. (5.10)

Then
max

1≤j≤M
|aj | ≤ cN−q max

1≤`≤M
|b`|. (5.11)

Proof of Theorem 3.1. In this proof, let N be an integer satisfying the conditions of Proposition 5.1(b), and for
` = 1, · · · ,M , z` = f(x`)− σN (f)(x`). In view of (5.5) and (5.7), and a well known result in linear algebra (cf. [7,
Proposition 6.1]), there exist aj ∈ R such that

M∑
j=1

ajΦN (x` − xj) = z` = y` − σN (f)(x`), ` = 1, · · · ,M, (5.12)

and (cf. (5.9))

max
1≤j≤M

|aj | ≤ cN−q max
1≤`≤M

|z`| = cN−q max
1≤`≤M

|y` − σN (x`)|

≤ cN−q
{

max
1≤`≤M

|y` − f(x`)|+ max
1≤`≤M

|f(x`)− σN (x`)|
}

≤ cN−q
{
ε+ EN/2(f)

}
. (5.13)

We now define

T #
N (D)(x) = σN (f)(x) +

M∑
j=1

ajΦN (x− xj), x ∈ Tq. (5.14)

Clearly, T #
N (D) ∈ HqN , and T #

N (D)(x`) = y`, ` = 1, · · · ,M . This proves (3.1).
Moreover, for every x ∈ Tq, (5.14) and (5.9) lead to

|f(x)− T #
N (D)(x)| ≤ |f(x)− σN (f)(x)|+

{
max

1≤j≤M
|aj |
} M∑
j=1

|ΦN (x− xj)|

≤ c

EN/2,∞(f) + cN−q
{
ε+ EN/2,∞(f)

} M∑
j=1

|ΦN (x− xj)|

 .

(5.15)

In view of (5.6), this leads to (3.2). �

6 Proof of Theorem 3.2.

In order to prove Theorem 3.2, we need some preparation.
We recall a theorem from [3, Theorem 1◦].
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Theorem 6.1 Let q = 1, f ∈W ∗(T), n ≥ 1 be an integer, E > 0, and T ∈ H1
n satisfy

‖f − T‖ ≤ E. (6.1)

Then
‖f ′ − T ′‖ ≤ c {nE + En(f ′)} . (6.2)

In the multivariate case, we take the derivatives one variable at a time to deduce the following corollary of
Theorem 6.1.

Corollary 6.1 Let f ∈W ∗, n ≥ 1 be an integer, E > 0, and T ∈ HqN satisfy

‖f − T‖ ≤ E. (6.3)

Then

‖f − T‖W∗ ≤ c

NE +

q∑
j=1

EN (Djf)

 . (6.4)

In particular,

‖T‖W∗ ≤ cN
{
E +

1

N
‖f‖W∗

}
. (6.5)

We note also the direct theorem of trigonometric approximation [17, Section 5.3].

Proposition 6.1 If f ∈W ∗ then

EN (f) ≤ c

N
‖f‖W∗ . (6.6)

We are now ready to prove Theorem 3.2.
Proof of Theorem 3.2. In this proof, let T # = T#

N (D) be as in Theorem 3.1, and

E = ε+ EN/2(f). (6.7)

In view of (3.2), we may use Corollary 6.1 to deduce that

‖f − T #‖W∗ ≤ c

NE +

q∑
j=1

EN (Djf)

 ≤ cN
{
E +

1

N
‖f‖W∗

}
. (6.8)

and in particular,

‖T #‖W∗ ≤ cN
{
E +

1

N
‖f‖W∗

}
. (6.9)

Using (3.1), (6.7) and (6.9), we obtain:

min
T∈HN

RN (T ) ≤ RN (T #) ≤ max
1≤j≤M

|yj − T #(xj)|+
1

N
‖T #‖W∗

=
1

N
‖T #‖W∗ ≤ c

{
E +

1

N
‖f‖W∗

}
.

In view of Proposition 6.1,

E ≤ c
{
ε+

1

N
‖f‖W∗

}
.

Together with (6.9), this proves (3.5).
Next, let x ∈ Tq, and δ = min

1≤j≤M
|x− xj | = |x− x`|. For brevity, we write

Ẽ = ε+
1

N
‖f‖W∗ .

Using (3.5) and Corollary 6.1, we deduce that

|f(x)− T ∗(x)| ≤ |f(x)− f(x`)|+ |f(x`)− T ∗(x`)|+ |T ∗(x`)− T ∗(x)|

≤ |x− x`|‖f‖W∗ + cẼ + |x− x`|‖T ∗‖W∗ ≤ Nδ
1

N
‖f‖W∗ + cẼ +NδẼ

≤ c(1 +Nδ)Ẽ.

This proves (3.6). �
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7 Conclusions

We have the puzzle that deep networks (and sometimes also shallow ones) do not exhibit over-fitting even though
the number of parameters is very large and the training error is reduced to zero. We have initiated a rigorous study
of this phenomenon from the point of view of function approximation, giving estimates on how many parameters
are needed to exhibit a zero or good training error, which is also compatible with the generalization error. Our
estimates are given in terms of the data characteristics and the smoothness of the target function. An interesting
feature is that over-parametrization allows us to overcome the noise in the training data, in contrast to classical
machine learning paradigm.
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