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Abstract

It is very attractive to formulate vision in terms of pattern theory [26], where patterns are defined
hierarchically by compositions of elementary building blocks. But applying pattern theory to real world
images is very challenging and is currently less successful than discriminative methods such as deep
networks. Deep networks, however, are black-boxes which are hard to interpret and, as we will show,
can easily be fooled by adding occluding objects. It is natural to wonder whether by better under-
standing deep networks we can extract building blocks which can be used to develop pattern theoretic
models. This motivates us to study the internal feature vectors of a deep network using images of
vehicles from the PASCAL3D+ dataset with the scale of objects fixed. We use clustering algorithms,
such as K-means, to study the population activity of the features and extract a set of visual concepts
which we show are visually tight and correspond to semantic parts of the vehicles. To analyze this in
more detail, we annotate these vehicles by their semantic parts to create a new dataset which we call
VehicleSemanticParts, and evaluate visual concepts as unsupervised semantic part detectors. Our
results show that visual concepts perform fairly well but are outperformed by supervised discriminative
methods such as Support Vector Machines. We next give a more detailed analysis of visual concepts
and how they relate to semantic parts. Following this analysis, we use the visual concepts as building
blocks for a simple pattern theoretical model, which we call compositional voting. In this model several
visual concepts combine to detect semantic parts. We show that this approach is significantly better
than discriminative methods like Support Vector machines and deep networks trained specifically for
semantic part detection. Finally, we return to studying occlusion by creating an annotated dataset
with occlusion, called Vehicle Occlusion, and show that compositional voting outperforms even deep
networks when the amount of occlusion becomes large.
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It is very attractive to formulate vision in terms of pattern theory
[26], where patterns are defined hierarchically by compositions of
elementary building blocks. But applying pattern theory to real
world images is very challenging and is currently less successful
than discriminative methods such as deep networks. Deep net-
works, however, are black-boxes which are hard to interpret and,
as we will show, can easily be fooled by adding occluding objects.
It is natural to wonder whether by better understanding deep net-
works we can extract building blocks which can be used to develop
pattern theoretic models. This motivates us to study the internal
feature vectors of a deep network using images of vehicles from
the PASCAL3D+ dataset with the scale of objects fixed. We use
clustering algorithms, such as K-means, to study the population
activity of the features and extract a set of visual concepts which
we show are visually tight and correspond to semantic parts of the
vehicles. To analyze this in more detail, we annotate these vehicles
by their semantic parts to create a new dataset which we call Ve-
hicleSemanticParts, and evaluate visual concepts as unsupervised
semantic part detectors. Our results show that visual concepts per-
form fairly well but are outperformed by supervised discriminative
methods such as Support Vector Machines. We next give a more
detailed analysis of visual concepts and how they relate to seman-
tic parts. Following this analysis, we use the visual concepts as
building blocks for a simple pattern theoretical model, which we
call compositional voting. In this model several visual concepts
combine to detect semantic parts. We show that this approach is
significantly better than discriminative methods like Support Vec-
tor machines and deep networks trained specifically for semantic
part detection. Finally, we return to studying occlusion by creating
an annotated dataset with occlusion, called Vehicle Occlusion, and
show that compositional voting outperforms even deep networks
when the amount of occlusion becomes large.

KEYWORDS AND PHRASES: Pattern theory, deep networks, visual con-
cepts.
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1. Introduction

It is a pleasure to write an article to honor David Mumford’s enormous
contributions to both artificial and biological vision. This article addresses
one of David’s main interests, namely the development of grammatical and
pattern theoretic models of vision [48, 26]. These are generative models
which represent objects and images in terms of hierarchical compositions of
elementary building blocks. This is arguably the most promising approach to
developing models of vision which have the same capabilities as the human
visual system and can deal with the exponential complexity of images and
visual tasks. Moreover, as boldly conjectured by David [27, 17|, they suggest
plausible models of biological visual systems and, in particular, the role of
top-down processing.

But despite the theoretical attractiveness of pattern theoretic methods
they have not yet produced visual algorithms capable of competing with
alternative discriminative approaches such as deep networks. One reason
for this is that, due to the complexity of image patterns, it very hard to
specify their underlying building blocks patterns (by contrast, it is much
easier to develop grammars for natural languages where the building blocks,
or terminal nodes, are words). But deep networks have their own limitations,
despite their ability to learn hierarchies of image features in order to perform
an impressive range of visual tasks on challenging datasets. Deep networks
are black boxes which are hard to diagnose and they have limited ability to
adapt to novel data which were not included in the dataset on which they
were trained. For example, Figure (1) shows how the performance of a deep
network degrades when we superimpose a guitar on the image of a monkey.
The presence of the guitar causes the network to misinterpret the monkey as
being a human while also mistaking the guitar for a bird. The deep network
presumably makes these mistakes because it has never seen a monkey with
a guitar, or a guitar with a monkey in the jungle (but has seen a bird in the
jungle or a person with a musical instrument). In short, the deep network
is over-fitting to the typical context of the object.

But over-fitting to visual context is problematic for standard machine
learning approaches, such as deep networks, which assume that their train-
ing and testing data is representative of some underlying, but unknown,
distribution [37, 38]. The problem is that images, and hence visual context,
can be infinitely variable. A realistic image can be created by selecting from
a huge range of objects (e.g., monkeys, guitars, dogs, cats, cars, etc.) and
placing them in an enormous number of different scenes (e.g., jungle, beach,
office) and in an exponential number of different three-dimensional positions.
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Figure 1: Caption: Adding occluders causes deep networks to fail. We re-
fer such examples as adversarial context examples since the failures are
caused by misusing context/occluder info. Left Panel: The occluding mo-
torbike turns a monkey into a human. Center Panel: The occluding bicycle
turns a monkey into a human and the jungle turns the bicycle handle into
a bird. Right Panel: The occluding guitar turns the monkey into a human
and the jungle turns the guitar into a bird.

Moreover, in typical images, objects are usually occluded as shown in Fig-
ure (1). Occlusion is a fundamental aspect of natural images and David has
recognized its importance both by proposing a 2.1 D sketch representation
[28] and also by using it as the basis for a “dead leaves” model for image
statistics [18].

Indeed the number of ways that an object can be occluded is, in itself,
exponential. For example, if an object has P different parts then we can oc-
clude any subset of them using any of N different occluders yielding O(P™)
possible occluding patterns. In the face of this exponential complexity the
standard machine learning assumptions risk breaking down. We will never
have enough data both to train, and to test, black box vision algorithms.
As is well known, many image datasets have confounds which mean that
algorithms trained on them rarely generalize to other datasets [4])Instead
we should be aiming for visual algorithms that can learn objects (and other
image structures) from limited amounts of data (large, but not exponen-
tially large). In addition, we should devise strategies where the algorithms
can be tested on potentially infinite amounts of training data. One promis-
ing strategy is to expand the role of adversarial noise [34, 10, 45], so that
we can create images which stress-test algorithms and deliberately target
their weaknesses. This strategy is more reminiscent of game theory than the
standard assumptions of machine learning (e.g., decision theory).

This motivates a research program which we initiate in this paper by
addressing three issues. Firstly, we analyze the internal structure of deep
networks in order both to better understand them but, more critically, to
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extract internal representations which can be used as building blocks for
pattern theoretic models. We call these representations visual concepts and
extract them by analyzing the population codes of deep networks. We quan-
tify their ability for detecting semantic parts of objects. Secondly, we develop
a simple compositional-voting model to detect semantic parts of objects by
using these building blocks. These models are similar to those in [1]. Thirdly,
we stress test these compositional models, and deep networks for comparison,
on datasets where we have artificially introduced occluders. We emphasize
that neither algorithm, compositional-voting or the deep network has been
trained on the occluded data and our goal is to stress test them to see how
well they perform under these adversarial conditions.

In order to perform these studies, we have constructed two datasets
based on the PASCAL3D+ dataset [43]. Firstly, we annotate the seman-
tic parts of the vehicles in this dataset to create the VehicleSemanticPart
dataset. Secondly, we create the Vehicle Occlusion dataset by superimpos-
ing cutouts of objects from the PASCAL segmentation dataset [8] into
images from the VehicleSemanticPart dataset. We use the VehicleSeman-
ticPart dataset to extract visual concepts by clustering the features of a
deep network VGG-16 [33], trained on ImageNet, when the deep network is
shown objects from VehicleSemanticPart. We evaluate the visual concepts,
the compositional-voting modes, and the deep networks for detecting se-
mantic parts image with and without occlusion, i.e. VehicleSemanticPart
and Vehicle Occlusion respectively.

2. Related work

David’s work on pattern theory [26] was inspired by Grenander’s seminal
work [11] (partly due to an ARL Center grant which encouraged collabo-
ration between Brown University and Harvard). David was bold enough to
conjecture that the top-down neural connections in the visual cortex were for
performing analysis by synthesis [27]. Advantages of this approach include
the theoretical ability to deal with large numbers of objects by part sharing
[46]. But a problem for these types of models was the difficulty in specifying
suitable building blocks which makes learning grammars for vision consider-
ably harder than learning them for natural language [35, 36]. For example,
researchers could learn some object models in an unsupervised manner, e.g.,
see [49], but this only used edges as the building blocks and hence ignored
most of the appearance properties of objects. Attempts have been made to
obtain building blocks by studying properties of image patches [30] and [5]
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but these have yet to be developed into models of objects. Though promis-
ing, these are pixel-based and are sensitive to spatial warps of images and
do not, as yet, capture the hierarchy of abstraction that seems necessary to
deal with the complexity of real images.

Deep networks, on the other hand, have many desirable properties such
as hierarchies of feature vectors (shared across objects) which capture in-
creasingly abstract, or invariant, image patterns as they ascend the hierarchy
from the image to the object level. This partial invariance arises because they
are trained in a discriminative way so that decisions made about whether
a viewed object is a car or not must be based on hierarchical abstractions.
It has been shown, see [47, 22, 44, 32], that the activity patterns of deep
network features do encode objects and object parts, mainly by considering
the activities of individual neurons in the deep networks.

Our approach to study the activation patterns of populations of neuron
[40] was inspired by the well-known neuroscience debate about the neu-
ral code. On one extreme is the concept of grandmother calls described by
Barlow [3] which is contrasted to population encoding as reported by Geor-
gopoulos et al. [9]. Barlow was motivated by the finding that comparatively
few neurons are simultaneously active and proposed sparse coding as a gen-
eral principle. In particular, this suggests a form of extreme sparsity where
only one, or a few cells, respond to a specific local stimulus (similar to a
matched template). As we will see in Section (6), visual concepts tend to
have this property which is developed further in later work. There are, of
course, big differences between studying population codes in artificial neu-
ral networks and studying them for real neurons. In particular, as we will
show, we can modify the neural network so that the populations represent-
ing a visual concept can be encoded by wisual concept neurons, which we
call ve-neurons. Hence our approach is consistent with both extreme neuro-
science perspectives. We might speculate that the brain uses both forms of
neural encoding useful for different purposes: a population, or signal repre-
sentation, and a sparser symbolic representation. This might be analogous
to how words can be represented as binary encodings (e.g., cat, dog, etc.)
and by continuous vector space encodings where similarity between vectors
captures semantic information [25]. Within this picture, neurons could rep-
resent a manifold of possibilities which the ve-neurons would quantize into
discrete elements.

We illustrate the use of visual concepts to build a compositional-voting
model inspired by [1], which is arguably the simplest pattern theoretic
method. We stress that voting schemes have frequently been used in com-

puter vision without being thought of as examples of pattern theory meth-
ods [12, 19, 24, 29].
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To stress test our algorithms we train them on un-occluded images and
test them on datasets with occlusion. Occlusion is almost always present
in natural images, though less frequently in computer vision datasets, and
is fundamental to human perception. David’s work has long emphasized
its significance [28, 18] and it is sufficiently important for computer vision
researchers to have addressed it using deep networks [39]. It introduces dif-
ficulties for tasks such as object detection [16] or segmentation [20]. As has
already been shown, part-based models are very useful for detecting partially
occluded objects [7, 6, 21].

3. The datasets

In this paper we use three related annotated datasets. The first is the vehi-
cles in the PASCAL3D+ dataset [43] and their keypoint interactions. The
second is the VehicleSemanticPart dataset which we created by annotating
semantic parts on the vehicles in the PASCAL3D+ dataset to give a richer
representation of the objects than the keypoints. The third is the Vehicle
Occlusion dataset where we occluded the objects in the first two datasets.

The vehicles in the PASCAL3D+ dataset are: (i) cars, (ii) airplanes,
(iii) motorbikes, (iv) bicycles, (v) buses, and (vi) trains. These images in
the PASCAL3D+ dataset are selected from the Pascal and the ImageNet
datasets. In this paper, we report results only for those images from Ima-
geNet, but we obtain equivalent results on PASCAL, see arxiv paper [40].
These images were supplemented with keypoint annotations (roughly ten
keypoints per object) and also estimated orientations of the objects in terms
of the azimuth and the elevation angles. These objects and their keypoints
are illustrated in Figure (2) (upper left panel).

We use this dataset to extract the visual concepts, as described in the
following section. In order to do this, we first re-scale the images so that
the minimum of the height and width is 224 pixels (keeping the aspect
ratio fixed). We also use the keypoint annotations to evaluate the ability of
the visual concepts to detect the keypoints. But there are typically only 10
keypoints for each object which means they can only give limited evaluation
of the visual concepts.

In order to test the visual concepts in more detail we defined semantic
parts on the vehicles and annotated them to create a dataset called Vehicle-
SemanticParts. There are thirty nine semantic parts for cars, nineteen for
motorbikes, ten for buses, thirty one for aeroplanes, fourteen for bicycles,
and twenty for trains. The semantic parts are regions of 100 x 100 pixels and
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Figure 2: The figure illustrates the keypoints on the PASCAI3D+ dataset.
For cars, there are keypoints for wheels, headlights, windshield corners and
trunk corners. Keypoints are specified on salient parts of other objects. Best
seen in color.

provide a dense coverage of the objects, in the sense that almost every pixel
on each object image is contained within a semantic part. The semantic
parts have verbal descriptions, which are specified in the webpage http://
cevl.jhu.edu/SP.html. The annotators were trained by being provided by:
(1) a one-sentence verbal description, and (2) typical exemplars. The se-
mantic parts are illustrated in Figure (3) where we show a representative
subset of the annotations indexed by “A”, “B”, etc. The car annotations
are described in the figure caption and the annotations for the other objects
are as follows: (I) Airplane Semantic Parts. A: nose pointing to the right,
B: undercarriage, C: jet engine, mainly tube-shape, sometimes with highly
turned ellipse/circle, D: body with small windows or text, E: wing or eleva-
tor tip pointing to the left, F: vertical stabilizer, with contour from top left
to bottom right, G: vertical stabilizer base and body, with contour from top
left to bottom right. (IT) Bicycle Semantic Parts. A: wheels, B: pedal, C:
roughly triangle structure between seat, pedal, and handle center, D: seat,
E: roughly T-shape handle center. (III) Bus Semantic Parts. A: wheels, B:
headlight, C: license plate, D: window (top) and front body (bottom), E:
display screen with text, F: window and side body with vertical frame in
the middle, G: side windows and side body. (IV) Motorbike Semantic Parts.
A: wheels, B: headlight, C: engine, D: seat. (V) Train Semantic Parts. A:
front window and headlight, B: headlight, C: part of front window on the
left and side body, D: side windows or doors and side body, E: head body
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on the right or bottom right and background, F: head body on the top left
and background.).

Figure 3: This figure illustrates the semantic parts labelled on the six vehicles
in the VehicleSemanticParts dataset (remaining panels). For example, for car
semantic parts. A: wheels, B: side body, C: side window, D: side mirror and
side window and wind shield, E: wind shield and engine hood, F: oblique
line from top left to bottom right, wind shield, G: headlight, H: engine hood
and air grille, I: front bumper and ground, J: oblique line from top left to
bottom right, engine hood. The parts are weakly viewpoint dependent. See
text for the semantic parts of the other vehicles.

In order to study occlusion we create the VehicleOcclusion dataset.
This consists of images from the VehicleSemanticPart dataset. Then we add
occlusion by randomly superimposing a few (one, two, or three) occluders,
which are objects from PASCAL segmentation dataset [8], onto the images.
To prevent confusion, the occluders are not allowed to be vehicles. We also
vary the size of the occluders, more specifically the fraction of occluded pixels
from all occluders on the target object, is constrained to lie in three ranges
0.2—0.4,0.4—0.6 and 0.6—0.8. To compute these fractions, requires estimat-
ing the sizes of the vehicles in the VehicleSemanticPart dataset, which can be
done using the 3D object models associated to the images in PASCAL3D+.

4. The visual concepts

We now analyze the activity patterns within deep networks and show that
they give rise to visual concepts which correspond to part/subparts of ob-
jects and which can be used as building blocks for compositional models.
In Section (4.2) we obtain the visual concepts by doing K-means clustering
followed by a merging stage. Next in Section (4.3), we show an alternative
unsupervised method which converges to similar visual concepts but which
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Figure 4: Examples for occluded cars with occlusion level 1, 5 and 9 respec-
tively. Level 1 means 2 occluders with fraction 0.2-0.4 of the object area
occluded, level 5 means 3 occluders with fraction 0.4-0.6 occluded, and level
9 means 4 occluders with fraction 0.6-0.8 occluded.

can be implemented directly by a modified deep network with additional
(unsupervised) nodes/neurons. Section (4.4) gives visualization of the visual
concepts. Section (4.5) evaluates them for detecting keypoints and semantic
parts.

4.1. Notation

We first describe the notation used in this paper. The image is defined on
the image lattice and deep network feature vectors are defined on a hier-
archy of lattices. The visual concepts are computed at different layers of
the hierarchy, but in this paper we will concentrate on the pool-4 layer, of
a VGG-16 [33] trained on ImageNet for classification, and only specify the
algorithms for this layer (it is trivial to extend the algorithms to other lay-
ers). The groundtruth annotations, i.e. the positions of the semantic parts,
are defined on the image lattice. Hence we specify correspondence between
points of the image lattice and points on the hierarchical lattices. Visual
concepts will never be activated precisely at the location of a semantic part,
so we specify a neighborhood to allow for tolerance in spatial location. In
the following section, we will use more sophisticated neighborhoods which
depend on the visual concepts and the semantic parts.

An image I is defined on the image lattice Ly by a set of three-dimensional
color vectors {I,; : ¢ € Lo}. Deep network feature vectors are computed on a
hierarchical set of lattices £;, where [ indicates the layer with £; C £;_1 for
[ =0,1,.... This paper concentrates on the pool-4 layer £4. We define corre-
spondence between the image lattice and the pool-4 lattice by the mappings
Tosa(.) from Ly to L4 and m40(.) from L4 to Lo respectively. The function
m4—0(.) gives the exact mapping from L4 to Ly (recall the lattices are defined
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so that £4 C Ly). Conversely, mp4(q) denotes the closest position at the L4
layer grid that corresponds to g, i.e., mo—4(g) = argmin, Dist(q, Lo(p)).

The deep network feature vectors at the pool-4 layer are denoted by
{f, : p € L4}. These feature vectors are computed by f, = f(I,,), where
the function f is specified by the deep network and I, is an image patch, a
subregion of the input image I, centered on a point 74,0(p) on the image
lattice Lg.

The visual concepts {VC, : v € V} at the pool-4 layer are specified by
a set of feature vectors {f, : v € V}. They will be learnt by clustering
the pool-4 layer feature vectors {f,} computed from all the images in the
dataset. The activation of a visual concept VC, to a feature vector f, at
p € L4 is a decreasing function of ||f, — fp|| (see later for more details).
The visual concepts will be learnt in an unsupervised manner from a set
T ={I": n = 1,..,N} of images, which in this paper will be vehicle
images from PASCAL3D+ (with tight bounding boxes round the objects
and normalized sizes).

The semantic parts are given by {SPs € S} and are pre-defined for each
vehicle class, see Section (3) and the webpage http://ccvl.jhu.edu/SP.html.
These semantic parts are annotated on the image dataset {I" : n=1,..., N}
by specifying sets of pixels on the image lattice corresponding to their centers
(each semantic part corresponds to an image patch of size 100 x 100). For
a semantic part SPg, we define 7, to be the set of points ¢ on the image
lattices Lo where they have been labeled. From these labels, we compute
a set of points 7,~ where the semantic part is not present (constrained so
that each point in 7, is at least v pixels from every point in 7,7, where v
is chosen to ensure no overlap).

We specify a circular neighborhood N (¢) for all points ¢ on the image
lattices Lo, given by {p € Lo s.t. ||p — ¢|| < w%n}- This neighborhood is
used when we evaluate if a visual concept responds to a semantic part by
allowing some uncertainty in the relative location, i.e. we reward a visual
concept if it responds near a semantic part, where nearness is specified by
the neighborhood. Hence a visual concept at pixel p € L4 responds to a
semantic part s at position ¢ provided ||f, —£,|| is small and 74,,0(p) € N(q).
In this paper, the neighborhood radius 7y, is set to be 56 pixels for the
visual concept experiments in this section, but was extended to 120 for our
late work on voting, see Section (5). For voting, we start with this large
neighborhood but then learn more precise neighborhoods which localize the
relative positions of visual concept responses to the positions of semantic
parts.
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Figure 5: Left Panel: The images I are specified on the image lattice £y and
a deep network extracts features on a hierarchy of lattices. We concentrate
on the features {f,} at pool-4 lattice L4. Projection functions mso() and
Tos4() map pixels from L4 to Ly and vice versa. We study visual concepts
VC, at layer £, and relate them to semantic parts SP¢ defined on the image
lattice. Center Panel: the visual concepts are obtained by clustering the
normalized feature vectors {f,}, using either K-means or a mixture of Von
Mises-Fisher. Right Panel: extracting visual concepts by a mixture of Von
Mises-Fisher is attractive since it incorporates visual concepts within the
deep network by adding additional visual concept neurons (vc-neurons).

. Pool4

4.2. Learning visual concepts by K-means

We now describe our first method for extracting visual concepts which uses
the K-means algorithm. First we extract pool-4 layer feature vectors {f,}
using the deep network VGG-16 [33] from our set of training images 7. We
normalize them to unit norm, i.e. such that |f,| = 1, Vp.

Then we use K-means++ [2], to cluster the feature vectors into a set V
of visual concepts. Each visual concept VC, has an index v € {1,2,...,|V|}
and is specified by its clustering center: f, € R?'? (where 512 is the dimension
of the feature vector at pool-4 of VGG-net.)

In mathematical terms, the K-means algorithm attempts to minimize a
cost function F(V,{f,}) = >_, , Vpollfp — f,||?, with respect to the assign-
ment variable V' and the cluster centers {f,}. The assignment variables V
impose hard assignment so that each feature vector f, is assigned to only
one visual concept f,, i.e. for each p, Vp s« = 1 if v% = argmin, ||f, — £,]],
and Vj,, = 0 otherwise. The K-means algorithm minimizes the cost function
F(V,f,}) by minimizing with respect to V' and {f,} alternatively. The K-
means++ algorithm initializes K-means by taking into account the statistics
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of the data {f,}. We took a random sample of 100 feature vectors per image
as input.

The number of clusters K = |V| is important in order to get good visual
concepts and we found that typically 200 visual concepts were needed for
each object. We used two strategies to select a good value for K. The first
is to specify a discrete set of values for K (64, 128, 256, 512), determine
how detection performance depends on K, and select the value of K with
best performance. The second is start with an initial set of clusters followed
by a merging stage. We use the Davies-Boundin index as a measure for the
“goodness” of a cluster k. This is given by DB(k) = max,«j %, where
fi and f,,, denote the centers of clusters k£ and m respectively. o and oy,
denote the average distance of all data points in clusters k£ and m to their
respective cluster centers, i.e., o = % > pec, 1 — f.||?, where C, = {p :
Vi = 1} is the set of data points that are assigned to cluster k. The Davies-
Boundin index takes small values for clusters which have small variance of
the feature vectors assigned to them, i.e. where Zp:vwzl £, — £,)%/n, is
small (with n, =3_ 1, _; 1), but which are also well separated from other
visual clusters, i.e., |, —f,| is large for all u # v. We initialize the algorithm
with K clusters (e.g., 256, or 512) rank them by the Davies-Boundin index,
and merge them in a greedy manner until the index is below a threshold, see
our longer report [40] for more details. In our experiments we show results
with and without cluster merging, and the differences between them are
fairly small.

4.3. Learning visual concepts by a mixture of von Mises-Fisher
distributions

We can also learn visual concepts by modifying the deep network to in-
clude additional ve neurons which are connected to the neurons (or nodes)
in the deep network by soft-max layers, see Figure (5). This is an attractive
alternative to K-means because it allows visual concepts to be integrated
naturally within deep networks, enabling the construction of richer archi-
tectures which share both signal and symbolic features (the deep network
features and the visual concepts). In this formulation, both the feature vec-
tors {f,} and the visual concepts {f,} are normalized so lie on the unit
hypersphere. Theoretical and practical advantages of using features defined
on the hypersphere are described in [41].

This can be formalized as unsupervised learning where the data, i.e. the
feature vectors {f,}, are generated by a mixture of von Mises-Fisher dis-
tributions [13]. Intuitively, this is fairly similar to K-means (since K-means
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relates to learning a mixture of Gaussians, with fixed isotropic variance, and
von-Mises-Fisher relates to an isotropic Gaussian as discussed in the next
paragraph). Learning a mixture of von Mises-Fisher can be implemented by
a neural network, which is similar to the classic result relating K-means to
competitive neural networks [14].

The von-Mises Fisher distribution is of form:

(1) P(fp|fv) = eXP{nfp £},

1
Z(n)
where 7 is a constant, Z(n) is a normalization factor, and f,, and £, are both
unit vectors. This requires us to normalize the weights of the visual con-
cepts, so that |f,| = 1, Vv, as well as the feature vectors {f,}. Arguably it is
more natural to normalize both the feature vectors and the visual concepts
(instead of only normalizing the feature vectors as we did in the last sec-
tion). There is a simple relationship between von-Mises Fisher and isotropic
Gaussian distributions. The square distance term ||f, — f,|| becomes equal
to 2(1 —f,-f,) if [|f,|| = ||fs|| = 1. Hence an isotropic Gaussian distribution
on f, with mean f, reduces to von Mises-Fisher if both vectors are required
to lie on the unit sphere.

Learning a mixture of von Mises-Fisher can be formulated in terms of
neural networks where the cluster centers, i.e. the visual concepts, are spec-
ified by wisual concept neurons, or ve-neurons, with weights {f,}. This can
be shown as follows. Recall that V), , is the assignment variable between a
feature vector f, and each visual concept f,, and denote the set of assign-
ment by V,, = {V,, : v € V} During learning this assignment variable V,, is
unknown but we can use the EM algorithm, which involving replacing the
Vpv by a distribution g,(p) for the probability that V},, = 1.

The EM algorithm can be expressed in terms of minimizing the following
free energy function with respect to {¢,} and {f,}:

(2)
F{aw} {f}) Z{qu ) log P(fp, V| {fy} +qu ) log ¢, (p)},

The update rules for the assignments and the visual concepts are respec-
tively:

(3) qt_ eXp{??fp'fi} ptrl f

= — enghf, + 1,
v exp{nt, £} !

where 7 is a Lagrange multiplier to enforce |fiF1] = 1.
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Observe that the update for the assignments are precisely the standard
neural network soft-maz operation where the {f,} are interpreted as the
weights of vc-neurons and the neurons compete so that their activity sums
to 1 [14]. After the learning algorithm has converged this softmax activa-
tion indicates soft-assignment of a feature vector f,, to the vc-neurons. This
corresponds to the network shown in Figure (5).

This shows that learning visual concepts can be naturally integrated
into a deep network. This can either be done, as we discussed here, after the
weights of a deep network have been already learnt. Or alternatively, the
weights of the vc neurons can be learnt at the same times as the weights of
the deep network. In the former case, the algorithm simply minimizes a cost
function:

exp{nf, - f,
W Y eatar, £ o Ll )

which can be obtained from the EM free energy by solving for the {g,}
directly in terms of {f,}, to obtain ¢, = %, and substituting this
back into the free energy.

Learning the visual concepts and the deep network weights simultane-
ously is performed by adding this cost function to the standard penalty
function for the deep network. This is similar to the regularization method
reported in [23]. Our experiments showed that learning the visual concepts
and the deep network weights simultaneously risks collapsing the features
vectors and the visual concepts to a trivial solution.

4.4. Visualizing the visual concepts

We visualize the visual concepts by observing the image patches which are
assigned to each cluster by K-means. We observe that the image patches
for each visual concept roughly correspond to semantic parts of the object
classes with larger parts at higher pooling levels, see Figure (6). This paper
concentrates on visual concepts at the pool-4 layer because these are most
similar in scale to the semantic parts which were annotated. The visual
concepts at pool-3 layer are at a smaller scale, which makes it harder to
evaluate them using the semantic parts. The visual concepts at the pool-5
layer have two disadvantages. Firstly, they correspond to regions of the image
which are larger than the semantic parts. Secondly, their effective receptive
field sizes which were significantly smaller than their theoretical receptive
field size (determined by using deconvolution networks to find which regions
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Figure 6: This figure shows example visual concepts on different object cat-
egories from the VehicleSemanticPart dataset, for layers pool3, pool4 and
pool5. Each row visualizes three visual concepts with four example patches,
which are randomly selected from a pool of the closest 100 image patches.
These visual concepts are visually and semantically tight. We can easily
identify the semantic meaning and parent object class.
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Figure 7: This figure shows that visual concepts typically give a dense cov-
erage of the different parts of the objects, in this case a car.

of the image patches affected the visual concept response) which meant that
they appeared less tight when we visualized them (because only the central
regions of the image patches activated them, so the outlying regions can
vary a lot).

Our main findings are that the pool-4 layer visual concepts are: (i) very
tight visually, in the sense that image patches assigned to the same visual
concept tend to look very similar which is illustrated in Figure (8) and (ii)
give a dense coverage of the objects as illustrated in Figure (7). Demonstrat-
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(a) pool4 visual concept (b) poolj single filter

Figure 8: This figure shows four visual concept examples (left four) and
four single filter examples (right four). The top row contains example image
patches, and the bottom two rows contain average edge maps and intensity
maps respectively obtained using top 500 patches. Observe that the means
of the visual concepts are sharper than the means of the single filters for
both average edge maps and intensity maps, showing visual concepts capture
patterns more tightly than the single filters.

ing tightness and coverage of the visual concepts is hard to show in a paper,
so we have created a webpage http://ccvl.jhu.edu/cluster.html where read-
ers can see this for themselves by looking at many examples. To illustrate
visual tightness we show the average of the images and edge maps of the
best 500 patches for a few visual concepts, in Figure (8), and compare them
to the averages for single filters. These averages show that the clusters are
tight.

4.5. Evaluating visual concepts for detecting keypoints and
semantic parts

We now evaluate the visual concepts as detectors of keypoints and semantic
parts (these are used for evaluation only and not for training). Intuitively, a
visual concept VC, is a good detector for a semantic part SP if the visual
concept “fires” near most occurrences of the semantic part, but rarely fires in
regions of the image where the semantic part is not present. More formally,
a visual concept VC, fires at a position p € L4 provided |f, —f,| < T, where
T is a threshold (which will be varied to get a precision-recall curve). Recall
that for each semantic part s € S we have a set of points 7,7 where the
semantic part occurs, and a set 7.~ where it does not. A visual concept v
has a true positive detection for ¢ € 7" if minyep(q) |f, — 5| < T'. Similarly,
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it has a false positive if the same condition holds for s € 7,~. As the threshold
T varies we obtain a precision-recall curve and report the average precision.

We also consider variants of this approach by seeing if a visual concept
is able to detect several semantic parts. For example, a visual concept which
fires on semantic part “side-window” is likely to also respond to the semantic
parts “front-window” and “back-window”, and hence should be evaluated by
its ability to detect all three types of windows. Note that if a visual concept
is activated for several semantic parts then it will tend to have fairly bad
average precision for each semantic part by itself (because the detection for
the other semantic parts will count as false positives).

We show results for two versions of visual concept detectors, with and
without merging indicated by S-VCj,; and S-VCp respectively. We also im-
plemented two baseline methods for comparison methods. This first baseline
uses the magnitude of a single filter response, and is denoted by S-F. The
second baseline is strongly supervised and trains support vector machines
(SVM) taking the feature vectors at the pool-4 layer as inputs, notated by
SVM-F. The results we report are based on obtaining visual concepts by
K-means clustering (with or without merging), but we obtain similar results
if we use the von Mises-Fisher online learning approach.

4.5.1. Strategies for evaluating visual concepts. There are two pos-
sible strategies for evaluating visual concepts for detection. The first strategy
is to crop the semantic parts to 100 x 100 image patches, { Py, Py, -+, P, },
and provide some negative patches { P41, Pnt2, -+ , Pntm} (Where the se-
mantic parts are not present). Then we can calculate the response of VC,, by
calculating Res; = ||f; — f,||. By sorting those m + n candidates by the VC
responses, we can get a list Py, Pr,,---, Py, . in which ki, ko, - kpyn
is a permutation of 1,2,--- ,m + n. By varying the threshold from Resy,
to Resy,, ., we can calculate the precision and recall curve. The average
precision can be obtained by averaging the precisions at different recalls.
This first evaluation strategy is commonly used for detection tasks in
computer vision, for example to evaluate edge detection, face detection,
or more generally object detection. But it is not suitable for our purpose
because different semantic parts of object can be visually similar (e.g., the
front, side, and back windows of cars). Hence the false positives of a semantic
part detector will often be other parts of the same object, or a closely related
object (e.g., car and bus semantic parts can be easily confused). In practice,
we will want to detect semantic parts of an object when a large region of
the object is present. The first evaluation strategy does not take this into
account, unless it is modified so that the set of negative patches are carefully
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balanced to include large numbers of semantic parts from the same object
class.

Hence we use a second evaluation strategy, which is to crop the object
bounding boxes from a set of images belonging to the same object class to
make sure they only have limited backgrounds, and then select image patches
which densely sample these bounding boxes. This ensures that the negative
image patches are strongly biased towards being other semantic parts of the
object (and corresponds to the typical situation where we will want to detect
semantic parts in practice). It will, however, also introduce image patches
which partly overlap with the semantic parts and hence a visual concept
will typically respond multiple times to the same semantic part, which we
address by using non-maximum suppression. More precisely, at each position
a visual concept VC, will have a response ||f, — f,||. Next we apply non-
maximum suppression to eliminate overlapping detection results, i.e. if two
activated visual concepts have sufficiently similar responses, then the visual
concept with weaker response (i.e. larger ||f, — f,||) will be suppressed by
the stronger one. Then we proceed as for the first strategy, i.e. threshold
the responses, calculate the false positives and false negatives, and obtain
the precision recall curve by varying the threshold. (A technical issue for
the second strategy is that some semantic parts may be close together, so
after non-maximum suppression, some semantic parts may be missed since
the activated visual concepts could be suppressed by nearby stronger visual
concept responses. Then a low AP will be obtained, even though this visual
concept might be very good for detecting that semantic part).

4.5.2. Evaluating single visual concepts for keypoint detection.
To evaluate how well visual concepts detect keypoints we tested them for
vehicles in the PASCAL3D+ dataset and compared them to the two baseline
methods, see Table (1). Visual concepts and single filters are unsupervised
so we evaluate them for each keypoint, by selecting the visual concept, or
single filter, which have best detection performance, as measured by aver-
age precision. Not surprisingly, the visual concepts outperformed the single
filters but were less successful than the supervised SVM approach. This is
not surprising, since visual concepts and single filters are unsupervised. The
results are fairly promising for visual concepts since for almost all semantic
parts we either found a visual concept that was fairly successful at detecting
them. We note that typically several visual concepts were good at detecting
each keypoint, recall that there are roughly 200 visual concepts but only ap-
proximately 10 keypoints. This suggests that we would get better detection
results by combining visual concepts, as we will do later in this paper.
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Table 1: AP values for keypoint detection on PASCAL3D+ dataset for six
object categories. Visual concepts, with S-VC,,, or without S-VCg merg-
ing, achieves much higher results than the single filter baseline S-F. The
SVM method SVM-F does significantly better, but this is not surprising
since it is supervised. The keypoint number-name mapping is provided be-
low. Cars — 1: wheel 2: wind shield 3: rear window 4: headlight 5: rear light
6: front 7: side; Bicycle — 1: head center 2: wheel 3: handle 4: pedal 5: seat;
Motorbike — 1: head center 2: wheel 3: handle 4: seat; Bus — 1: front upper
corner 2: front lower corner 3: rear upper corner 4: rear lower corner 5: wheel
6: front center; Train — 1: front upper corner 2: front lower corner 3: front
center 4: upper side 5: lower side; Aeroplane — 1: nose 2: upper rudder 3:
lower rudder 4: tail 5: elevator and wing tip

Car Bicycle Motorbike

1123|4567 mAP||1{2|3|4|5mAP||1]|2]|3]|4 |mAP

S-F ||.86|.44/.30|.38|.19|.33|.13| .38 ||.23|.67|.25|.43|.43| .40 ||.26|.60(.30|.22| .35
S-VCy,|.92|.51|.27|.41|.36|.46|.18| .45 ||.32|.78].30|.55[.57| .50 ||.35|.75[.43|.25| .45
S-VCx ||.94|.51|.32|.53|.36|.48|.22| .48 ||.35|.80|.34[.53|.63| .53 ||.40[.76|.44|.43| .51
SVM-F|.97|.65|.37|.76|.45(.57|.30| .58 ||.37|.80|.34|.71|.64| .57 ||.37|.77|.50(.60| .56
Bus Train Aeroplane
1123|456 mAP||1]2|3|4|5mAP|1|2|3]|4]|5 |mAP

S-F ||.45|.42|.23|.38|.80|.22| .42 ||.39|.33|.24|.16|.15| .25 ||.41].25|.22].13|.31| .26
S-VCj,|-41|.59|.26|.29|.86|.51| .49 ||.41].30|.30(.28|.24| .30 ||.21].47|.31].16|.34| .30
S-VCx ||.41].51|.26|.33|.86|.52| .48 |].42|.32|.30|.28|.25| .32 ||.31|.47(.31|.20(.35| .33
SVM-F||.74|.70(.52|.63|.90(.61| .68 ||.71|.49|.50(.36|.39| .49 ||.72|.60/.50|.32|.49| .53

4.5.3. Evaluating single visual concepts for semantic part detec-
tion. The richer annotations on VehicleSemanticPart allows us to get bet-
ter understanding of visual concepts. We use the same evaluation strategy
as for keypoints but report results here only for visual concepts with merg-
ing S-VC and for single filters S-F. Our longer report [40] gives results for
different variants of visual concepts (e.g., without merging, with different
values of K, etc.) but there is no significant difference. Our main findings
are: (i) that visual concepts do significantly better than single filters, and (ii)
for every semantic part there is a visual concept that detects it reasonably
well. These results, see Table (2), support our claim that the visual concepts
give a dense coverage of each object (since the semantic parts label almost
every part of the object). Later in this paper, see Table (3) (known scale),
we compare the performance of SVMs to visual concepts for detecting se-
mantic parts. This comparison uses a tougher evaluation criterion, based on
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Table 2: The AP values for semantic part detection on VehicleSemanticPart
dataset for cars (top), aeroplanes (middle) and bicycle (bottom). We see that
visual concepts S-VC,,, achieves much higher AP than single filter method
S-F. The semantic part names are provided in http://ccvl.jhu.edu/SP.html

1121314156 7|8]9(10{11(12|13|14|15(16|17| 18
S-F ||.86|.87|.84|.68|.70(.83|.83|.82|.72|.18|.22|.49|.33|.25|.22|.18|.37| .18
S-VC,||.94[.97].94(.93|.94|.95(.94|.92|.94|.42|.48|.58|.45|.48|.46|.54/.60| .34
19120(21(22|23|24(25[26(27|28|29(30(31|32|33|34 |35 mAP
S-F ||.28].13|.16|.14/.30(.20/.16|.17|.15|.27|.19|.25|.18|.19|.16|.07|.07| .36
S-VC,,||.38[.19(.26|.37|.42|.32(.26|.40(.29|.40|.18|.41|.53|.31|.57|.36|.26| .53

(a) Car

112|13(4(5]6|7|8|9(10[11|12|13|14|15[16|17|mAP
S-F ||.32].42|.08|.61|.58.42/.49|.31|.23|.09(.07|.20|.12|.29|.29|.07|.09| .28
S-VCy/||.26(.21].07|.84|.61|.44(.63|.42|.34|.15|.11|.44|.23|.59|.65|.08|.15| .37

(b) Aeroplane

112131456789 |10{11]12|{13|/mAP
S-F ||.77].84].89(.91].94|.92(.94|.91|.91|.56/.53|.15|.40| .75
S-VC,/|[.91].95|.98].96|.96|.96|.97].96|.97|.73|.69|.19|.50| .83

(c) Bicycle

11213[4|5|6|7]|8(9/(10[11{12/mAP
S-F |[.69].46|.76(.67|.66|.57|.54|.70(.68|.25|.17|.22| .53
S-VC,|[.89.64/.89|.77|.82|.63|.73|.75|.88|.39|.33|.29| .67

(d) Motorbike

11213[4|5(6|7|8]9 mAP
S-F |[.90].40(.49|.46|.31|.28|.36/.38|.31| .43
S-VC,/||.93].64/.69|.59|.42.48/.39|.32|.27| .53

(e) Bus

11213[4(5|6|7|8[9(10(11]12/13(14mAP
S-F |[.58].07|.20|.15|.21|.15[.27|.43|.17|.27|.16.25|.17|.10| .23
S-VC,/||.66].50(.32|.28|.24|.15(.33|.72|.36|.41|.27|.45|.27|.47| .39

(f) Train

the interSection over union (IOU) [8], but the relative performance of the
two methods is roughly the same as for the keypoints.

4.5.4. What do the other visual concepts do?. The previous exper-
iments have followed the “best single visual concept evaluation”. In other
words, for each semantic part (or keypoint), we find the single visual concept
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Figure 9: The histograms of the AP responses for all visual concepts. For
“SingleSP” | we evaluate each visual concept by reporting its AP for its best
semantic part (the one it best detects). Some visual concepts have very low
APs when evaluated in this manner. For “MultipleSP”, we allow each visual
concept to detect a small subset of semantic parts (two, three, or four) and
report the AP for the best subset (note, the visual concept is penalized if it
does not detect all of them). The APs rise considerably using the MultipleSP
evaluation, suggesting that some of the visual concepts detect a subset of
semantic parts. The remaining visual concepts with very low APs correspond
to the background.

which best detects that semantic part. But this ignores three issues: (I) A
visual concept may respond to more than one semantic part (which means
that its AP for one semantic part is small because the others are treated as
false positives). (IT) There are far more visual concepts than semantic parts,
so our previous evaluations have not told us what all the visual concepts
are doing (e.g., for cars there are roughly 200 visual concepts but only 39
semantic parts, so we are only reporting results for twenty percent of the
visual concepts). (IIT) Several visual concepts may be good for detecting the
same semantic part, so combining them may lead to better semantic part
detection.

In this section we address issues (I) and (II), which are closely related,
and leave the issue of combining visual concepts to the next section. We find
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1 3
Number of Favored Semantic Parts for Each Visual Concept

Figure 10: Distribution of number of semantic parts favored by each visual
concept for 6 objects. Most visual concepts like one, two, or three semantic
parts.

that some visual concepts do respond better to more than one semantic part,
in the sense that their AP is higher when we evaluate them for detecting
a small subset of semantic parts. More generally, we find that almost all
the visual concepts respond to a small number of semantic parts (one, two,
three, or four) while most of the limited remaining visual concepts appear
to respond to frequently occuring “backgrounds”, such as the sky in the
airplane images.

We proceed as follows. Firstly, for each visual concept we determine
which semantic part it best detects, calculate the AP, and plot the histogram
as shown in Figure 9 (SingleSP). Secondly, we allow each visual concept to
select a small subset — two, three, or four — of semantic parts that it can
detect (penalizing it if it fails to detect all of them). We measure how well
the visual concept detects this subset using AP and plot the same histogram
as before. This generally shows much better performance than before. From
Figure 9 (MultipleSP) we see that the histogram of APs gets shifted greatly
to the right, when taking into account the fact that one visual concept may
correspond to one or more semantic parts. Figure 10 shows the percentage
of how many semantic parts are favored by each visual concept. If a visual
concept responds well to two, or more, semantic parts, this is often because
those parts are visually similar, see Figure 11. For example, the semantic
parts for car windows are visually fairly similar. For some object classes,
particularly aeroplanes and trains, there remain some visual concepts with
low APs even after allowing multiple semantic parts. Our analysis shows that
many of these remaining visual concepts are detecting background (e.g., the
sky for the aeroplane class, and railway tracks or coaches for the train class),
see Figure 12. A few other visual concepts have no obvious interpretation
and are probably due to limitations of the clustering algorithm and the CNN
features.
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Figure 11: This figure shows two examples of visual concepts that correspond
to multiple semantic parts. The first six columns show example patches from
that visual concept, and the last two columns show prototypes from two
different corresponding semantic parts. We see that the visual concept in
the first row corresponds to “side window” and “front window”, and the
visual concept in the second row corresponds to “side body and ground”
and “front bumper and ground”. Note that these semantic parts look fairly

similar.
1 4

Figure 12: The first row shows a visual concept corresponding to sky from
the aeroplane class, and the second and third rows are visual concepts cor-
responding to railway track and tree respectively from the train class.

Our results also imply that there are several visual concepts for each
semantic part. In other work, in preparation, we show that these visual
concepts typically correspond to different subregions of the semantic parts
(with some overlap) and that combining them yields better detectors for all
semantic parts with a mean gain of 0.25 AP.

4.6. Summary of visual concepts

This section showed that visual concepts were represented as internal rep-
resentations of deep networks and could be found either by K-means or by
an alternative method where the visual concepts could be treated as hidden
variables attached to the deep network. The visual concepts were visually
tight, in the sense that image patches assigned to the same visual concept
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looked similar. Almost all the visual concepts corresponded to semantic parts
of the objects (one, tow, three, or four), several corresponded to background
regions (e.f., sky), but a few visual concepts could not be interpreted. More
results and analysis can be found in our longer report [40] and the webpage
http://cevl.jhu.edu/cluster.html.

In particular, we observed that visual concepts significantly outper-
formed single filters for detecting semantic parts, but performed worse than
supervised methods, such as support vector machines (SVMs), which took
the same pool-4 layer features as input. This worse performance was due
to several factors. Firstly, supervised approaches have more information so
they generally tend to do better on discriminative tasks. Secondly, several
visual concepts tended to fire on the same semantic part, though in differ-
ent locations, suggesting that the visual concepts correspond to subparts of
the semantic part. Thirdly, some visual concepts tended to fire on several
semantic parts, or in neighboring regions.

These findings suggest that visual concepts are suitable as building
blocks for pattern theoretic models. We will evaluate this in the next section
where we construct a simple compositional-voting model which combines
several visual concepts to detect semantic parts.

5. Combining visual concepts for detecting semantic parts
with occlusion

The previous section suggests that visual concepts roughly correspond to
object parts/subparts and hence could be used as building blocks for com-
positional models. To investigate this further, we study the precise spatial
relationships between the visual concepts and the semantic parts. Previously
we only studied whether the visual concepts were active within a fixed size
circular window centered on the semantic parts. Our more detailed stud-
ies show that visual concepts tend to fire in much more localized positions
relative to the centers of the semantic parts.

This study enables us to develop a compositional voting algorithm where
visual concepts combine together to detect semantic parts. Intuitively the
visual concepts provide evidence for subparts of the semantic parts, taking
into account their spatial relationships, and we can detect the semantic parts
by combining this evidence. The evidence comes both from visual concepts
which overlap with the semantic parts, but also from visual concepts which
lie outside the semantic part but provide contextual evidence for it. For ex-
ample, a visual concept which responds to a wheel gives contextual evidence
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Figure 13: The goal is to detect semantic parts of the object despite occlu-
sion, but without being trained on the occlusion. Center panel: yellow indi-
cates unoccluded part, blue means partially occluded part, while red means
fully occluded part. Right panel: Visual concepts (the circles) give evidence
for semantic parts. They can be switched off automatically in presence of
occlusion (the red circles) so that only the visual concepts that fire (green
circles) give positive evidence for the presence of the parts. This robustness
to occlusion is characteristic of our compositional model and enables it to
outperform fully supervised deep networks.

for the semantic part “front window” even though the window is some dis-
tance away from the wheel. We must be careful, however, about allowing
contextual evidence because this evidence can be unreliable if there is occlu-
sion. For example, if we fail to detect the wheel of the car (i.e. the evidence
for the wheel is very low) then this should not prevent us from detecting
a car window because the car wheel might be occluded. But conversely, it
can detect the wheel then this should give contextual evidence which helps
detect the window.

A big advantage of our compositional voting approach is that it gives a
flexible and adaptive way to deal with context which is particularly helpful
when there is occlusion, see Figure (13). If the evidence for a visual concept
is below a threshold, then the algorithm automatically switches off the vi-
sual concept so that it does not supply strong negative evidence. Intuitively
“absence of evidence is not evidence of absence”. This allows a flexible and
adaptive way to include the evidence from visual concepts if it is supportive,
but to automatically switch it off if it is not. We note that humans have this
ability to adapt flexibly to novel stimuli, but computer vision and machine
learning systems rarely do since the current paradigm is to train and test al-
gorithms on data which are presumed to be drawn from the same underlying
distribution. Our ability to use information flexibly means that our system
is in some cases able to detect a semantic part from context even if the part
itself is completely occluded and, by analyzing which visual concepts have
been switched off, to determine if the semantic part itself is occluded. In
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Figure 14: Ilustration of the training phase of one (VC,, SP,) pair. Only
one negative point is shown in each image (marked in a yellow frame in
the third column), though the negative set is several times larger than the
positive set, see [42] for details.

later work, this switching off can be extended to deal with the “explaining
away” phenomena, highlighted by work in cognitive science [15].

5.1. Compositional voting: detecting semantic parts with and
without occlusion

Our compositional model for detecting semantic parts is illustrated in Fig-
ure (14). We develop it in the following stages. Firstly, we study the spatial
relations between the visual concepts and the semantic parts in greater de-
tail. In the previous section, we only use spatial relations (e.g., is the visual
concept activated within a window centered on the semantic part, where the
window size and shape was independent of the visual concept or the seman-
tic part). Secondly, we compute the probability distributions of the visual
concept responses depending on whether the semantic part is present or not.
This enables us to use the log-likelihood ratio of these two distributions as
evidence for the presence of the semantic part. Thirdly, we describe how the
evidence from the visual concepts can be combined to vote for a semantic
part, taking into account the spatial positions of the parts and allowing vi-
sual concepts to switch off their evidence if it falls below threshold (to deal
with occlusion).
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5.1.1. Modeling the spatial relationship between visual concepts
and semantic parts. We now examine the relationship between visual
concepts and semantic parts by studying the spatial relationship of each
(VC,, SPy) pair in more detail. Previously we rewarded a visual concept if it
responded in a neighborhood N of a semantic part, but this neighborhood
was fixed and did not depend on the visual concept or the semantic part.
But our observations showed that if a visual concept VC, provides good
evidence to locate a semantic part SPg, then the SP; may only appear at
a restricted set of positions relative to VC,. For example, if VC, represents
the upper part of a wheel, we expect the semantic part (wheel) to appear
slightly below the position of VC,.

Motivated by this, for each (VC,,SPg) pair we learn a neighborhood
function N, s indicating the most likely spatial relationship between VC,
and SPg. This is illustrated in Figure (14). To learn the neighborhood, we
measured the spatial statistics for each (VC,,SPs) pair. For each anno-
tated ground-truth position ¢ € 7,5 we computed the position p* in its L4
neighborhood which best activates VC,, i.e. p* = arg min,caqq) [|f(Ip) — £l
yielding a spatial offset Ap = p* — ¢. We normalize these spatial offsets to
yield a spatial frequency map Fr, s(Ap) € [0,1]. The neighborhood N, s is
obtained by thresholding the spatial frequency map. For more details see
[42].

5.1.2. Probability distributions, supporting visual concepts and
log-likelihood scores. We use loglikelihood ratio tests to quantify the
evidence a visual concept VC, € V can give for a semantic part SP; € S.
For each SPg, we use the positive and negative samples 7,7 and 7, to
compute the conditional distributions:

d

Fl(r)=—P in |[f(I,) — £, < +

5) L) = goPr| win 60 < £l < rlae T,
d

F- (r)= —P in [|f(T,) - £,]| < -1,

©) o) = 4P| min @) £l < g€ T

We call Ffj (1) the target distribution, which specifies the probability activity
pattern for VC, if there is a semantic part SPg nearby. If (VC,, SP;) is a
good pair, then the probability F;f  (r) will be peaked close to r = 0, (i.e.,
there will be some feature vectors within N, s(¢) that cause VC, to activate).
The second distribution, F ((r) is the reference distribution which specifies
the response of the feature vector if the semantic part is not present.



178 Jianyu Wang et al.
The evidence is provided by the log-likelihood ratio [1]:
(7) Ay (1) = log Fr'i’s—,

where ¢ is a small constant chosen to prevent numerical instability.

In practice, we use a simpler method to first decide which visual concepts
are best suited to detect each semantic part. We prefer (VC,, SP;) pairs for
which F ((r) is peaked at small 7. This corresponds to visual concepts which
are fairly good detectors for the semantic part and, in particular, those which
have high recall (few false negatives). This can be found from our studies of
the visual concepts described in Section (4). For more details see [42]. For
each semantic part we select K visual concepts to vote for it. We report
results for K = 45, but good results can be found with fewer. For K = 20
the performance drops by only 3%, and for K = 10 it drops by 7.8%.

5.2. Combining the evidence by voting

The voting process starts by extracting CNN features on the pool-4 layer,
ie. {fy}) for p € L4. We compute the log-likelihood evidence A, for each
(VC,,SPy) at each position p. We threshold this evidence and only keep
those positions which are unlikely to be false negatives. Then the vote that
a visual concepts gives for a semantic part is obtained by a weighted sum of
the loglikelihood ratio (the evidence) and the spatial frequency.

The final score which is added to the position p + Ap is computed as:

(8) Votey,s(p) = (1 — B8) Av,s(Ip) + Blog w

The first term ensures that there is high evidence of VC, firing, and the
second term acts as the spatial penalty ensuring that this VC, fires in the

right relative position Here we set 3 = 0.7, and define log w = —oo when

w =0, and U is a constant.

In order to allow the voting to be robust to occlusion we need this ability
to automatically “switch off” some votes if they are inconsistent with other
votes. Suppose a semantic part is partially occluded. Some of its visual
concepts may still be visible (i.e. unoccluded) and so they will vote correctly
for the semantic part. But some of the visual concepts will be responding
to the occluders and so their votes will be contaminated. So we switch off
votes which fall below a threshold (chosen to be zero) so that failure of a
visual concept to give evidence for a semantic part does not prevent the
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semantic part from being detected — i.e. absence of evidence is not evidence
of absence. Hence a visual concept is allowed to support the detection of a
semantic part, but not allowed to inhibit it.

The final score for detecting a semantic part SPg is the sum of the
thresholded votes of its visual concepts:

9) Scoreg(p) = Z max {0, Vote, s(p) }.
VC,eVs

In practical situations, we will not know the size of the semantic parts
in the image and will have to search over different scales. For details of this
see [42]. Below we report results if the scale is known or unknown.

5.3. Experiments for semantic part detection with and without
occlusion

We evaluate our compositional voting model using the VehicleSemanticParts
and the VehicleOcclusion datasets. For these experiments we use a tougher,
and more commonly used, evaluation criterion [8], where a detected semantic
part is a true-positive if its Intersection-over-Union (IoU) ratio between the
groundtruth region (i.e. the 100 x 100 box centered on the semantic part)
and the predicted region is greater or equal to 0.5, and duplicate detection
is counted as false-positive.

In all experiments our algorithm, denoted as VT, is compared to three
other approaches. The first is single visual concept detection S-VC,,, (de-
scribed in the previous section). The others two are baselines: (I) Faster-
RCNN, denoted by FR, which trains a Faster-RCNN [31] deep network for
each of the six vehicles, where each semantic part of that vehicle is consid-
ered to be an “object category”. (II) the Support Vector Machine, denoted
by SVM-VC, used in the previous section. Note that the Faster-RCNN is
much more complex than the alternatives, since it trains an entire deep net-
work, while the others only use the visual concepts plus limited additional
training.

We first assume that the target object is not occluded by any irrelevant
objects. Results of our algorithm and its competitors are summarized in
Table 3. Our voting algorithm achieves comparable detection accuracy to
Faster-RCNN, the state-of-the-art object detector, and outperforms it if
the scale is known. We observe that the best single visual concept S-VCj;
performs worse than the support vector machine SVM-VC (consistent with
our results on keypoints), but our voting method VT performs much better
than the support vector machine.
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Table 3: Detection accuracy (mean AP, %) and scale prediction loss without
occlusion. Performance for the deep network FR. is not altered by knowing
the scale

Unknown Scale Known Scale

Object S—VCM|SVM—VC| FR | VT ||S-VC,, |SV1\/I—VC| VT
airplane | 10.1 18.2 45.3|30.6| 18.5 25.9 41.1
bicycle 48.0 58.1 75.9|77.8|| 61.8 73.8 81.6
bus 6.8 26.0 58.9/58.1| 27.8 39.6 60.3
car 18.4 27.4 66.4/63.4| 28.1 37.9 65.8
motorbike| 10.0 18.6 45.6153.4|| 34.0 43.8 58.7
train 1.7 7.2 40.7(35.5 13.6 21.1 51.4
mean 15.8 25.9 55.5/53.1|| 30.6 40.4 59.8

Table 4: Detection accuracy (mean AP, %) when the object is partially
occluded and the scale is unknown. Three levels of occlusion are considered

2 Occluders || 3 Occluders || 4 Occluders

02<r<0404<r<06|06<r<0.8
Object || FR | VT || FR | VT || FR | VT
airplane 126.3| 23.2 |/20.2| 19.3 |/15.2| 15.1
bicycle ||63.8| 71.7 ||53.8| 66.3 |[37.4| 54.3
bus 36.0| 31.3 |[27.5| 19.3 ||18.2] 9.5
car 32.9| 359 [[19.2| 23.6 ||11.9| 13.8
motorbike|| 33.1| 44.1 |[26.5| 34.7 || 17.8| 24.1
train 17.9| 21.7 ||10.0| 8.4 7.7 3.7
mean 35.0| 38.0 ||26.2| 28.6 ||18.0| 20.1

Next, we investigate the case that the target object is partially occluded
using the VehicleOcclusion dataset. The results are shown in Table 4. Ob-
serve that accuracy drops significantly as the amount of occlusion increases,
but our compositional voting method VT outperforms the deep network
FR for all levels of occlusion.

Finally we illustrate, in Figure (15), that our voting method is able to
detect semantic parts using context, even when the semantic part itself is
occluded. This is a benefit of our algorithm’s ability to use evidence flexibly
and adaptively.

6. Discussion: visual concepts and sparse encoding
Our compositional voting model shows that we can use visual concepts to

develop pattern theoretic models which can outperform deep networks when
tested on occluded images. But this is only the starting point. We now briefly



Visual concepts and compositional voting 181

Object: car {ActuaICase: LOW Occlusion ~ Object: car {Actual Case: LOW Occlusion  Object: car {ActuaICase: LOW Occlusion

SP: wheel \Prediction: LOW Occlusion ~ SP: wheel \Prediction: LOW Occlusion ~ SP: wheel \Prediction: MOD Occlusion

33 Supporting Visual Concepts 35 Supporting Visual Concepts 22 Supporting Visual Concepts
Average Distance: 14.5703 (Low) Average Distance: 19.2344 (Low) Average Distance: 44.4923 (Moderate)

Object: car {Actual Case: HIGH Occlusion Object: car {Actual Case: HIGH Occlusion Object: car {Actual Case: HIGH Occlusion

SP: h-light \Prediction: HIGH Occlusion  SP: h-light SP: h-light \Prediction: LOW Occlusion

25 Supporting Visual Concepts 22 Supporting Visual Concepts 30 Supporting Visual Concepts
Average Distance: 73.6239 (High) Average Distance: 75.9826 (High) Average Distance: 22.1090 (Low)

Figure 15: This figure shows detection from context: when there are occlu-
sions, the cues may come from context which is far away from the part.

describe ongoing work where visual concepts can be used to provide a sparse
encoding of objects.

The basic idea is to encode an object in terms of those visual concepts
which have significant response at each pixel. This gives a much more effi-
cient representation than using the high-dimensional feature vectors (typi-
cally 256 or 512). To obtain this encoding, we threshold the distance between
the feature vectors (at each pixel) and the centers of the visual concepts.
As shown in Figure (16) we found that a threshold of 7, = 0.7 ensured
that most pixels of the objects were encoded on average by a single visual
concept.

This means that we can approximately encode a feature vector f by
specifying the visual concept that is closest to it, i.e. by © = arg min,, |f —f,| -
provided this distance is less than a threshold 7,,,. More precisely, we can
encode a pixel p with feature vectors f, by a binary feature vector b, =
(b, ..., 0%, ...) where v indexes the visual concepts and b} = 1 if |f, — f,| <
T,, and b, = 0 otherwise. In our neural network implementation, the b5
correspond to the activity of the ve-neurons (if soft-max is replaced by hard-
max).
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Figure 16: This figure shows there is a critical threshold 7T;,, at roughly 0.7,
where most pixels are encoded (i.e. activate) a small number of visual con-
cepts. Below this threshold most pixels have no visual concepts activated. By
contrast, above the threshold, three or more visual concepts are activated.
These results are shown for level four features on the cars (left panel), bikes
(center panel) and trains (right panel) in VehicleSemanticPart, and we ob-
tain almost identical plots for the other objects in VehicleSemanticPart.

There are several advantages to being able to represent spatial patterns
of activity in terms of sparse encoding by visual concepts. Instead of repre-
senting patterns as signals f in the high-dimensional feature space we can
give them a more concise symbolic encoding in terms of visual concepts, or
by thresholding the activity of the vc-neurons. More practically, this leads
to a natural similarity measure between patterns, so that two patterns with
similar encodings are treated as being the same underlying pattern.

This encoding perspective follows the spirit of Barlow’s sparse coding
ideas [3] and is also helpful for developing pattern theory models, which are
pursuing in current research. It makes it more practical to learning gener-
ative models of the spatial structure of image patterns of an object or a
semantic part Ss. This is because generating the binary vectors {b} is much
easier than generating high-dimensional feature vectors {f}. It can be down,
for example, by a simply factorized model P({b,}|SPs) = [[, P(£,|SPs),
where P(f,|SPs) = [, P(byp|SPs), and b, , = 1 if the v*" ve-neuron (or vi-
sual concept) is above threshold at position p. It also yields simple distance
measures between different image patches which enables one-shot/few-shot
learning, and also to cluster image patches into different classes, such as into
different objects and different viewpoints.

7. Conclusion
This paper is a first attempt to develop novel visual architectures, inspired

by pattern theory, which are more flexible and adaptive than deep networks
but which build on their successes. We proceeded by studying the activation
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patterns of deep networks and extracting visual concepts, which both throws
light on the internal representations of deep networks but which can also
be used as building blocks for compositional models. We also argued that
the complexity of vision, particularly due to occlusions, meant that vision
algorithms should be tested on more challenging datasets, such as those
where occlusion is randomly added, in order to ensure true generalization.
Our studies showed that compositional models outperformed deep networks
when both were trained on unoccluded datasets but tested when occlusion
was present.

We conclude that converting deep networks into compositional models,
with more explicit representations of parts, will lead to more flexible and
adaptive visual architectures that can overcome the limitations of current
deep networks and start approaching the abilities of the human visual sys-
tem. We hope that this research program will help flesh out the details of
David’s pattern theory [26] in order to both improve its practical perfor-
mance but also to relate it more closely to biological visual systems [27].
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