
CBMM Memo No. 95 April 8, 2020

Can Deep Neural Networks Do Image
Segmentation by Understanding Insideness?

Kimberly M Villalobos, Jamell Dozier, Vilim Štih, Andrew Francl, Frederico Azevedo
Tomaso Poggio, Tomotake Sasaki, Xavier Boix

Center for Brains, Minds, and Machines

Abstract

THIS MEMO IS REPLACED BY CBMM MEMO 105
https://cbmm.mit.edu/sites/default/files/publications/CBMM-Memo-105.pdf

This material is based upon work supported by the Center for Brains,
Minds and Machines (CBMM), funded by NSF STC award CCF-1231216.

CAN DEEP NEURAL NETWORKS DO IMAGE SEGMEN-
TATION BY UNDERSTANDING INSIDENESS?

Kimberly M Villalobos, Jamell Dozier, Vilim Štih, Andrew Francl, Frederico Azevedo
Tomaso Poggio, Tomotake Sasaki, Xavier Boix

Center for Brains, Minds, and Machines

ABSTRACT

A key component of visual cognition is the understanding of spatial relationships
among objects. Albeit effortless to our visual system, state-of-the-art artificial
neural networks struggle to distinguish basic spatial relationships among elements
in an image. As shown here, deep neural networks (DNNs) trained with hundreds
of thousands of labeled examples cannot accurately distinguish whether pixels lie
inside or outside 2D shapes, a problem that seems much simpler than image seg-
mentation. In this paper, we sought to analyze the capability of ANN to solve such
inside/outside problem using an analytical approach. We demonstrate that it is a
mathematically tractable problem and that two previously proposed algorithms,
namely the Ray-Intersection Method and the Coloring Method, achieve perfect
accuracy when implemented in the form of DNNs.

1 INTRODUCTION

Visual cognition is the ability of analyzing shape properties and spatial relations of components of an
image Ullman (1983). A central goal of computer vision has been to implement it algorithmically.
While much emphasis has been put in the development of algorithms dealing with the analysis
of shape properties, i.e. object identification and categorization LeCun et al. (2015), less focus
has been placed in the implementation of algorithms that efficiently capture spatial relationships of
elements in an image. In a natural environment, understanding the spatial configurations of objects
is fundamental for tasks such as navigation, manipulation of objects, action planning and spatial
reasoning, etc.

One of the basic abilities of spatial reasoning is capturing the concept of insideness, i.e. being able
to determine whether a given dot lies inside or outside another shape. Although it seems to be a
trivial problem, state-of-the-art deep neural networks (DNNs) struggle to determine such relation-
ship Minsky & Papert (1988).

In this paper, we analyze the ability of current deep neural networks to solve the insideness problem
well. The mathematical tractability allows us to analytically construct deep neural networks that
solve at perfection the insideness problem for any arbitrary shape. These deep neural networks
borrow the algorithmic ideas of the Ray-Intersection Method and the Coloring method to deep neural
networks Ullman (1983). We show that the crossing and coloring algorithm have an equivalent
artificial neural network that implements them using a number of neurons linear in the size of the
image. By employing the optimal architectures and a set of weights analytically determined, DNNs
are able to discern inside from outside with perfect accuracy. Further, these DNNs are realizable in
practice, as the number of neurons in the DNNs grows linearly with the image size and complexity of
the shape. Although these results are encouraging, it remains to be seen if these DNNs are learnable
or not.

2 INSIDENESS

In this Section, we introduce the problem of “insideness”, which aims at capturing the most basic
form of segmentation. We use synthetic stimuli that solely contains a closed curve, which discard

2

Figure 1: Picture and its binary matrix representation.

issues related to object semantics, visual textures, hierarchy of segments, etc. Although these factors
are commonly tackled by segmentation algorithms, they can be discarded without affecting the core
problem of segmentation: distinguishing among parts of an image.

Insideness consists on finding which pixels are in the inside and which ones in the outside of a
closed curve. We assume for simplicity’s sake and without loss of generality of the conclusions of
this paper, that there is only one closed curve in the image and it is a Jordan curve, ie.a closed curve
without self-crossing or self-touching (see Appendix A for the exact definition of Jordan curves).
Let X ∈ {0, 1}M×N be a binary image of size M ×N pixels that contains one and only one Jordan
curve. We use the sub-indices m,n to denote the pixel at the coordinates (m,n), e.g.Xm,n. The
Jordan curve in X correspond to the pixels equal to 1, {Xm,n = 1}, otherwise the pixels are 0. In
Figure 1, we show examples of images for insideness.

The pixels in X with value Xm,n = 0 can be classified into two categories: the inside region and
the outside region of the Jordan curve. Let S(X) ∈ {0, 1}M×N be an image that represents the
segmentation of X. The segmentation of each pixel, S(X)m,n, can be defined as follows:

S(X)m,n =

{
0 if Xm,n = 0 and Xm,n is in the inside
1 if Xm,n = 0 and Xm,n is in the outside

0 or 1 if Xm,n = 1
, (1)

where the pixels of the Jordan curve, {Xm,n = 1}, can be segmented either as inside or outside
and are not evaluated. Note that unlike object recognition, insideness is rigorously and uniquely
determined by the input image itself.

3 THE RAY-INTERSECTION NEURAL NETWORK

The ray-intersection algorithm is also known as the crossings test or the even-odd test (Haines, 1994;
Fulton, 1995; Klette & Rosenfeld, 2004), and it has been used to distinguish inside and outside of
a curve (Ullman, 1983; 1984; 1996). In the following subsections, we introduce the ray algorithm
adapted to our nomenclature and then, its implementation with an DNN.

3.1 THE RAY ALGORITHM

Given an image X ∈ {0, 1}M×N containing one and only one digital Jordan curve FX, a horizontal
or vertical ray through the image alternates between inside region and outside region every time it
crosses the curve FX . Therefore, to find if a pixel with value 0 lies within the inside region of X ,
it is enough to count the number of times that any ray that starts from the pixel crosses FX (the
crossing number) and check its parity. If the parity of the crossing number is odd then the pixel is
inside, otherwise it is outside (see Fig. 2(a)). While the definition of a cross is intuitively simple,
we can see in Fig. 2(b) an example of a ray that touches the curve, but the type of region does not
change after this intersection. We then proceed to formally characterize a ray as well as what we
mean by crossing a curve.
Definition 1. Given a pixel Xm,n, we define the row vector associated to a ray pointing to the right
from this pixel as

~Xm,n = [Xm,n+1, Xm,n+2, . . . , Xm,N , 0, . . . , 0] ∈ {0, 1}1×N . (2)

3

(a) Ray Algorithm: the crossing
number is 1 and we can tell the
pixel is inside.

(b) Example of a case in which type of
region does not change after the inter-
section.

Figure 2: Valid and Invalid intersections

While the direction of the rays does not change the crossing number, we will use horizontal rays
throughout this paper for consistency. Let’s now consider all possible cases for how the ray ~Xm,n

could cross FX ; i.e, we analyze all possible segments of consecutive entries of ~Xm,n that have all
value 1. Suppose then that we have s consecutive entries Xm,n′+1 = Xm,n′+2 = . . . = Xm,n′+s =
1 with Xm,n′ = Xm,n′+s+1 = 0. Since each pixel in FX has exactly 2 adjacent entries that are also
in FX , we have only the following 5 cases depicted in Fig. 3:

1. s > 1, Xm+1,n′+1 = Xm−1,n′+s = 1 and Xm−1,n′+1 = Xm+1,n′+s = 0

2. s = 1, Xm−1,n′+1 = Xm+1,n′+1 = 1

3. s > 1, Xm+1,n′+1 = Xm−1,n′+s = 0 and Xm−1,n′+1 = Xm+1,n′+s = 1

4. s > 1, Xm+1,n′+1 = Xm+1,n′+s = 0 and Xm−1,n′+1 = Xm−1,n′+s = 1

5. s > 1, Xm+1,n′+1 = Xm+1,n′+s = 1 and Xm−1,n′+1 = Xm−1,n′+s = 0

We then notice that each time one of the first 3 cases occurs, the region indeed switches from inside
to outside or from outside to inside. On the other hand, the last two represent invalid intersections
(like in Fig. 2(b)) that should not be counted in the calculation of the crossing number, or at least
should not affect its parity. We say that a ray crosses FX if we are in one of the first three valid
cases. This implies that a pixel Xm,n with value 0 is in the inside region if and only if the number
of times that ~Xm,n crosses FX is odd. The following Lemma tells us how to find such a parity.

Lemma 1. Consider a rightward horizontal ray from a pixel Xm,n with value 0. Then,

~Xm,n · ~Xm+1,n ≡ crossing number of ~Xm,n (mod 2), (3)

where · denotes the standard inner product.

Proof. If in addition to the horizontal ray ~Xm,n from Xm,n we consider also the horizontal ray
~Xm+1,n below it, then we get the following invariant: for the first three crossing cases it holds

s∑
i=1

Xm,n′+i ·Xm+1,n′+i ≡ 1 (mod 2) (4)

whereas for the last two cases it holds
s∑

i=1

Xm,n′+i ·Xm+1,n′+i ≡ 0 (mod 2) (5)

and therefore, ~Xm,n · ~Xm+1,n has the same parity as the number of times that ~Xm,n crosses FX , as
desired. �

4

Figure 3: Depiction of the the 5 cases in which a ray can intersect the figure.

Since the parity of crossing number of ~Xm,n is equal to S(X)m,n, the distilling-segmentation prob-
lem can be solved by an algorithm that finds the parity of ~Xm,n · ~Xm+1,n for all pixels Xm,n and
outputs 1 for the pixels for which that quantity is odd, and 0 for those where the inner product is
even. We then are ready to present a feed-forward neural network that implements this algorithm.

3.2 RAY NETWORK

We are now ready to describe a neural network that implements the Ray Method. We define a 3-layer
feedforward neural network (Ray Network) that for an input image X and a set of parameters Θ,
computes the function ŜR(X;Θ), and we find optimal weightsΘR such thatS(X) = ŜR(X;ΘR)
perfectly estimates the desired answer satisfying (1). Roughly speaking, the 1st layer will pre-
process the input image so as to find ray intersections that are also crosses, and the second and
output layer will calculate the parity of the number of crossings for the ray corresponding to each
pixel.

The first hidden layer of this network,H(1) ∈ {0, 1}M×N , is defined by

H(1) :=
[
w(1) ∗X +B(1)

]
+
, (6)

where the symbol ∗ denotes the so-called convolution,w(1) ∈ R2 and the function []+ represents
element-wise application of the ReLU function to a matrix or a vector.

Let 1 I ∈ RI and 1 I×J ∈ RI×J denote the vector or matrix containing only 1s. If we set w(1)
R =

1 2 andB(1)
R = −1M×N , i.e, if the receptive field of the filter is simply the pixel and the pixel

below it, then we have that H(1)
m,n = 1 if and only if Xm,n = Xm+1,n = 1, implying that

1 1×N · ~H(1)
m,n = ~Pm,n · ~Pm+1,n. (7)

Therefore, by Lemma 1 the network just needs to compute the parity of 1 1×N · ~H(1)
m,n in the following

layers.

A feed-forward NN with one hidden layer and input x ∈ {0, 1}1×N is presented in (Shalev-Shwartz
et al., 2017) to find the parity of 1 1×N · x. The first layer is a fully connected layer with 3C
neurons, where C is an upper bound for 1 1×N · x, and the output layer is a fully connected layer
with a single neuron. Shalev-Schwartz et al provide a set of optimal parameters for which this
neural network outputs 1 if 1 1×N ·x is odd and 0 if it is even. In what follows we proceed to extend
such a network to a higher order case so that we can compute the parity of 1 1×N · ~H(1)

m,n for all m,n.

Let C(X) be the maximum number of times that a horizontal or vertical ray can cross the curve FX
and let C ′ = 3C(X). Then, we know that 1 1×N · ~H(1)

m,n ≤ C(X). We then define the second layer
H(2) ∈ RM×N×C′

by the equation

H(2)
:,:,r :=

[
w(2) ∗H(1) +B(2)

r

]
+
, for all r = 1, 2, . . . , C ′, (8)

5

Figure 4: Depiction of the Ray Network.

whereA:,:,k denotes the kth “matrix-slice” of A, w(2) ∈ R1×N andB(2)
r ∈ RM×N . And we lastly

define the output layer as

Y :=
[
w(3) ∗H(2) +B(3)

]
+
, (9)

where w(3) ∈ R1×1×C′
and B(3) ∈ RM×N . (See Fig. 4 for the complete structure of the Ray

Network).

By extending the optimal weights from the network presented by Shalev-Schwartz et al, we can find
optimal parametersw(2)

R , (BR)
(2)
r ,w

(3)
R andB(3)

R for our network such that Ym,n outputs the parity
of 1 1×N · ~H(1)

m,n. (The exact parameter values can be found in Appendix B). Therefore, if we define
ΘR = (w

(1)
R ,B

(1)
R ,w

(2)
R , {(BR)

(2)
r }C

′

r=1,w
(3)
R ,B

(3)
R) and apply both equation 7 and Lemma 1, we

obtain that with this weights Ym,n outputs Sn,m.

We can then summarize our findings from these section with the following theorem:

Theorem 1. There exist a feed forward neural network ŜR(X;ΘR) with O(C×M ×N) neurons,
and optimal parametersΘR such that

ŜR(X;ΘR) = S(X).

4 THE COLORING NEURAL NETWORK

pdf

4.1 COLORING ALGORITHM

The Coloring Algorithm (Ullman, 1983; 1984; 1996) is an application of the floodfill algorithm
(Torbert, 2016), and is another computational principle we can use to distinguish inside and outside.
The idea of this method is that if we know the region to which a pixel Xn,m with value 0 belongs,
we can identify the region to which its neighbors belong (this is analogous to using the same color
for points that belong to the same region when coloring an image). Since, by definition of our input
images, the pixels in the border of X are always in the outside region, we can identify all the other
pixels in the outside region recursively starting from the borders of the image and until this process
reaches the curve FX (Fig. 5). When this recursion ends, we know that the pixels with 0 value
which have not been identified to be in the outside region must be in the inside one. We can then
formalize our version of the coloring algorithm by treating 1 and 0 as Boolean values true and false
respectively, as follows:

Step 1 Initialize a memoryH ∈ RM×N with value 1 in the borders and 0 everywhere else.
Then, repeat N ·M times:

Step 2 For each pixel Xm,n:

(2a) Set p = [Hm,n and its neighbors have all value 0].
(2b) Set q = ¬p.
(2c) Update Hm,n = [q AND Xm,n = 0].

6

Figure 5: Coloring Method.

Intuitively, out memory H stores a value of 1 for all pixels that we know for sure are in the outside
region, and 0 for all the other pixels. In Step 1 we initialize the pixels in the border of the image as
outside pixels. In steps (2a) and (2b) we check if the pixel or its neighbors were already determined
to be outside, and in step (2c) we identify a pixel to be outside if the neighbors are outside and the
pixel does not belong to the curve. The correctness of this algorithm follows from the fact that if
there is a path of t pixels starting at some border pixel, moving vertically or horizontally through
neighboring pixels and ending at some outside pixel Xn,m, then after t iterations of the loop in step
2, pixel Xn,m is correctly classified as an outside pixel. Since the longest such path has at most
N ·M pixels, we know that when the algorithm finishes all outside pixels were found. In addition,
since pixels belonging to the curve are never set to be outside, neither are the pixels inside the curve
and therefore we know all unclassified pixels with value 0 must be inside.

4.2 COLORING NETWORK

We now define a recurrent neural network (Coloring Network) that for an input image X and a set
of parameters Θ, computes the function ŜC(X;Θ), and once again we find optimal parameters
ΘC such that S(X) = ŜC(X;ΘC). At the the tth iteration, this network updates a memory
H[t] ∈ RM×N that stores a value of 1 for all pixels that were found to be in the outside region and a
value of 0 for all other pixels. We then implement the steps of the coloring algorithm by interpreting
1 as the Boolean value for True and 0 as the Boolean value False. As we show in Appendix C), there
exist simple feed forward neural networks FN and FA and optimal parametersΘN,ΘA such that

NOT (Y) := FN(Y ,ΘN)

implements the element-wise Boolean functions NOT for the input matrix Z, and

AND(Y ,Z) := FA(Y ,Z,ΘA)

implements the element-wise Boolean function AND for input matrices Y and Z. We now proceed
to implement the Coloring Algorithm by using these neural sub-networks as building blocks.

Step 1 (Initialize a memoryH ∈ RM×N with value 1 in the borders and 0 everywhere else).
We manually initialize a memory H[0] ∈ RM×N that has value 1 for all pixels in the border of the
image and value 0 in all other pixels.

Step (2a) (Set p = [Hm,n and its neighbors have all value 0]).
For this, we define the hidden layer P [t] ∈ RM×N by

P [t] = [W ∗H[t− 1] +B]+ ,

where W ∈ R3×3 and B ∈ RM×N . Notice that the receptive field of the filter W covers all
neighbors of the pixel, and therefore if we setWC = −1 3×3 andBC = 1M×N , we have that

P [t]m,n = 1 ⇐⇒ H[t− 1]m,n and its neighbors have all value 0.

Step (2b) (Set q = ¬p).
The building block for this step is the neural network FN, which takes P [t] as its input and outputs

7

Figure 6: Depiction of the Coloring Network.

Q[t] ∈ RM×N . Therefore, if we use the optimal parameters ΘN, we obtain that the output of this
step is given by

Q[t] :=NOT (P [t]),

where
Q[t]m,n = 1 ⇐⇒ P [t]m,n = 0,

as desired.

Step (2c) (Update Hm,n = [q AND Xm,n = 0]).
This block, is the composition of the networks FN and FA, that with optimal parameters ΘN and
ΘA yield

H[t+ 1] := AND(Q[t],NOT (X)),

with
H[t+ 1]m,n = 1 ⇐⇒ Q[t]m,n = 1 and Xm,n = 0.

We repeat the loop M × N times so that the output of our network is given by ŜC(X;ΘC) =
H[M × N]. Therefore, defining ΘC = (WC ,BC ,ΘN,ΘA) we know that this network success-
fully implements each step of the coloring algorithm. (See Fig. 6 for the structure of the Coloring
Network.) We can summarize this section with the following theorem

Theorem 2. There exists a recurrent neural network ŜC(X;Θ) with O(M × N) neurons, and
optimal parametersΘC such that

ŜC(X;ΘC) = S(X).

5 CONCLUSION

We have shown that current DNNs can solve at perfection the insideness problem. These DNNs
are easily implementable in practice, as the number of neurons scales linearly with the image size
and complexity of the shapes. It remains to be seen if these networks are able to learn the optimal
weights when trained with examples.

REFERENCES

William Fulton. Algebraic Topology: A First Course. Springer, 1 edition, 1995.

8

Eric Haines. Point in polygon strategies. In Paul Heckbert (ed.), Graphics Gems IV, pp. 24–46.
Academic Press, 1994.

Reinhard Klette and Azriel Rosenfeld. Digital geometry: Geometric methods for digital picture
analysis. Elsevier, 2004.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436, 2015.

Marvin L. Minsky and Seymour A. Papert. Perceptrons: an introduction to computational geometry.
MIT Press, 1st edition, 1969.

Marvin L. Minsky and Seymour A. Papert. Perceptrons: an introduction to computational geometry.
MIT Press, expanded edition, 1988.

Shai Shalev-Shwartz, Ohad Shamir, and Shaked Shammah. Failures of gradient-based deep learning.
arXiv preprint arXiv:1703.07950, 2017.

Shane Torbert. Applied Computer Science. Springer, 2nd edition, 2016.

Shimon Ullman. Visual routines. Technical Report A.I. Memo No.723, Massachusetts Institute of
Technology Artificial Intelligence Laboratory, Cambridge, June 1983.

Shimon Ullman. Visual routines. Cognition, 18:97–159, 1984.

Shimon Ullman. High-Level Vision: Object Recognition and Visual Cognition. MIT Press, 1st
edition, 1996.

A FORMAL DEFINITIONS ABOUT INSIDE/OUTSIDE PROBLEM

Here we give formal definitions of basic notions used in this paper. We referred to the related def-
initions in the field of digital geometry (Klette & Rosenfeld, 2004) and in the book “Perceptrons”
(Minsky & Papert, 1969; 1988), but sometimes simplified or modified them for making the defini-
tions most suitable for our purposes.
Definition 2. When considering the matrix representation X ∈ {0, 1}M×N of a black and white
image, we slightly abuse notation and refer to X as the image and to Xn,m as the pixel in position
(n,m), where we assume (1, 1) is the upper left corner of the image.
Definition 3 (Border of an image). We refer to the border of an image X as the set of pixels Xn,m

such that m = 1,m = M,n = 1 or n = N .
Definition 4 (digital Jordan curve). Let X ∈ {0, 1}M×N for some N,M ≥ 3, and let c =
(s0, s1, . . . , sL) be a sequence of pixels in X such that they all have value 1. We call c a digi-
tal Jordan curve inX if the following five conditions are satisfied:

1. s0 = sL.

2. For any i ∈ {0, . . . , L− 1}, pixels si and si+1 have a common edge.

3. It holds si 6= sj for all i 6= j.

4. For each i ∈ {0, . . . , L− 1}, si, there exist exactly two other pixels in {s0, s1, . . . , sL−1}
that have a common edge with si.

Note that conditions 1 and 2 means the curve is closed, condition 3 means it doesn’t have self-
intersection or self-touching, and the last condition means the “thickness” of the curve is unitary.
Definition 5 (inside region and outside region of a picture). Let X ∈ {0, 1}M×N and suppose that
FX (the set of pixels inX with value 1) is a digital Jordan curve inX . We define the outside region
ofX as the set of all pixels v0 ∈X with value 0 such that there exists a sequence of 0-value pixels
starting from u,

(v0, v1, v2, . . . , vL), (10)

where pixels vi and vi+1 have a common vertex, and vL is the border of the imageX .

We define the inside region ofX as the set of pixels with value 0 that are not in the outside region.

9

B DETAILS FOR PROOF OF THEOREM 1

Weights and biases are determined as follows: w(2) = 1 1×N ∈ R1×N , B(2)
r ∈ RM×N is defined

by

(B(2)
r)m,n =


−(2u− 1

2) if r = 3u+ 1,

−2u if r = 3u+ 2,

−(2u+ 1
2) if r = 3u+ 3,

(11)

for all 1 ≤ m ≤M and 1 ≤ n ≤ N where u ∈ N0, w(3) ∈ R1×1×C′
is defined by

w(3)
r =


−2 if r ≡ 1 (mod 3),

4 if r ≡ 2 (mod 3),

−2 if r ≡ 3 (mod 3),

(12)

andB(3) = 1M×N ∈ RM×N .

We had 1 1×N · ~H(1)
m,n = ~Xm,n · ~Xm+1,n. Therefore,

H(2)
m,n,r = 1 1×N · ~H(1)

m,n + (B(2)
r)m,n = ~Xm,n · ~Xm+1,n + (B(2)

r)m,n. (13)

Next, notice that for each r = 3u + i with i ∈ {1, 2, 3}, there exists v ∈ Z such that it holds
~Xm,n · ~Xm+1,n = 2u+ v. Then,

H(2)
m,n,r =


[
v + 1

2

]
+

if r = 3u+ 1

[v]+ if r = 3u+ 2[
v − 1

2

]
+

if r = 3u+ 3,

(14)

and summing these three equations we can see that

−2H(2)
m,n,3u+1 + 4H

(2)
m,n,3u+2 − 2H

(2)
m,n,3u+3 =

{
−1 if v = 0,

0 otherwise.
(15)

Lastly, by definition of the output layer we obtain

Ym,n =

3(bC2 c+1)∑
r=1

w(3)
r H(2)

m,n,r + 1


+

=

bC2 c∑
u=0

(
w

(3)
3u+1H

(2)
m,n,3u+1 + w

(3)
3u+2H

(2)
m,n,3u+2 + w

(3)
3u+3H

(2)
m,n,3u+3

)
+ 1


+

=

bC2 c∑
u=0

−2H(2)
m,n,3u+1 + 4H

(2)
m,n,3u+2 − 2H

(2)
m,n,3u+3

+ 1


+

=

{
0 if ~Xm,n · ~Xm+1,n = 2u for some 0 ≤ u ≤ bC2 c
1 otherwise.

(16)

By Lemma 1 and the fact that ~Xm,n · ~Xm+1,n ≤ C, we conclude that

Ym,n =

{
0 if ~Xm,n · ~Xm+1,n is even ⇔ Xm,n is outside,
1 if ~Xm,n · ~Xm+1,n is odd ⇔ Xm,n is inside.

(17)

�

10

C NEURAL NETWORK REPRESENTATIONS OF BOOLEAN OPERATIONS

In the Coloring Network, we use neural network representations (implementations) of Boolean NOT
and Boolean AND as building blocks. Here we explain the details.

C.1 NEURAL NETWORK REPRESENTATION OF BOOLEAN NOT

In addition to the normal notation ¬, we use NOT : {0, 1} → {0, 1} to denote the Boolean NOT.
That is,

NOT(x) = ¬x =

{
1 if x = 0,
0 if x = 1.

(18)

Like other functions, we use NOT to denote element-wise application of NOT to a vector or a
matrix. We here show that this function can be represented by a neural network with rectified linear
function.

Let x ∈ {0, 1} and consider the neural network fN(·;θ) defined by

fN(x;θ) := [wx+ b]+ ∈ {0, 1}, (19)

where = (w, b) ∈ R2. It is easy to check that defining θ = (−1, 1), we obtain

fN(x;θN) = NOT (x).

We can then generalize to higher-order cases as follows. LetX ∈ {0, 1}I×J and consider the neural
network FN(·;Θ) defined by

FN(X;Θ) := [w ∗X +B]+ ∈ RI×J ,

whereΘ = (w,B). SettingΘN = (−1,1 I×J), we obtain FN(X;ΘN) = NOT(X).

C.2 NEURAL NETWORK REPRESENTATION OF BOOLEAN AND

In addition to the normal operator notation ∧, we use AND : {0, 1}×{0, 1} → {0, 1} to denote the
Boolean AND. That is,

AND(x1, x2) = x1 ∧ x2 = x1 · x2 =

{
1 if x1 = 1, x2 = 1
0 otherwise. (20)

Here, AND denotes element-wise application of AND to vectors or matrices. This can also be
implemented by a neural network with rectified linear activation function as shown below.

Let x1, x2 ∈ {0, 1} and consider the neural network fA(·, ·;θ) defined by

y = fA(x1, x2;θ) := [w · [x1, x2]
> + b]+ ∈ {0, 1},

where θ = (w, b). It is easy to verify that setting θA = (1 2,−1) we obtain

fA(x1, x2;θA) = AND(x1, x2)

As in the case of the Boolean NOT, we can generalize this function to higher order cases, but before
doing so, we introduce some notation.

Informally speaking, we use A �B to denote a tensor made by “stacking” a matrix B “behind” a
matrix A. Formal definition is as follows. Consider A = [Ai,j] ∈ RI×J and B = [Bi,j] ∈ RI×J .
We define a tensorA�B = [(A�B)i,j,k] ∈ RI×J×2 by the following equations:

(A�B)i,j,1 := Ai,j , (21)
(A�B)i,j,2 := Bi,j , (22)

for all 1 ≤ i ≤ I and 1 ≤ j ≤ J .

11

We can then extend the neural network fA as follows. Let X1,X2 ∈ {0, 1}I×J and consider the
neural network FA(·, ·;Θ) defined by

FA(X1,X2;Θ) := [w ∗ (X1 �X2) +B]+ ∈ RI×J ,

whereΘ = (w,B). SettingΘA = ([1, 1],−1 I×J) we obtain

FA(X1,X2;ΘA) = AND(X1,X2) =X1 �X2.

where � expresses the Hadamard porduct (element-wise product) of two matrices.

12

	Introduction
	Insideness
	The Ray-Intersection Neural Network
	The Ray Algorithm
	Ray Network

	The Coloring Neural Network
	Coloring Algorithm
	Coloring Network

	Conclusion
	Formal Definitions About Inside/Outside Problem
	Details for Proof of Theorem 1
	Neural Network Representations of Boolean Operations
	Neural Network Representation of Boolean NOT
	Neural Network Representation of Boolean AND

