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Abstract

We present an analysis of a risk-based selective quarantine model where the population is divided into low and
high-risk groups. The high-risk group is quarantined until the low-risk group achieves herd-immunity. We tackle the
question of whether this model is safe, in the sense that the health system can contain the number of low-risk people
that require severe ICU care (such as life support systems).

1 Introduction
One could consider three models for handling the spread of Covid-19.

1. Risk-based selective Quarantine: Divide the population into two groups, low-risk and high-risk. Quarantine the
high-risk and gradually release the low-risk population to achieve a managed herd immunity of that population.
The managed phase is designed to allow the health system to cope with the expected number of severe cases.
Given the herd immunity of the low-risk group, we can gradually release the high-risk population. The question
is how to manage the release from quarantine of the low and high risk populations in a way that will not
overwhelm the health system.

2. Containment-based selective quarantine: Find all the positive cases and put them in quarantine. This requires
an estimation of [t0, t1] the “contagious time interval” per age group, then given this time interval one could
recursively isolate all the individuals at risk from a person that is carrying the virus using “contact tracing”.
Another tool is predictive testing using contact-tracing to identify people with many contacts with other people
and perform tests on them.

3. Country wide (or region wide) lock-down until the spread of the virus is under control. The lock-down could
take anywhere from weeks to months. This is the safest route but does not prevent a “second wave” from
occurring.

Models 2,3 could work in tandem and have been tried in China and Singapore. Model 3 is currently the default
model around the globe and naturally has a tremendous crippling impact on the economy. In the remainder of this
white-paper we derive some tools for analyzing the viability of the risk-based model. Specifically, what level of
sampling and confidence level can be obtained to make sure that the health system can contain the model?

2 The Risk-based Selective Quarantine Model: How do we Know Whether
it is Safe?

Consider a plausible definition of a high-risk group based on a cut-off age and certain pre-existing conditions. For
the sake of concreteness, assume the cut-off age is 67+ which represents the retired segment of society. The low-risk
group is the remainder of society which are released to their daily routine while following certain distancing protocols
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that is aimed at slowing the spread, while keeping the economy un-disrupted to a large degree, but ultimately reaching
a herd immunity level. At that point it is safe to gradually release the high-risk group from quarantine. The question
is how do we guarantee that the health system will not be overwhelmed during the spread of the virus in the low-risk
group?

Let b be the number of severe cases, e.g., those that require an intensive care unit (ICU), that the health system can
handle, say b = 600 for a country of the size of Israel. Let mq be the number of low-risk people that will develop
severe symptoms and will require an ICU assuming we will adopt the risk-based selective model. Then, the model
is “safe” if b > mq . Our goal is to derive an upper bound on mq , so that we’ll be able to ensure that b > mq . Let
m be the size of the low-risk group and let ν be the probability that a person that comes from the low-risk group will
develop severe symptoms, assuming the person is currently sick. Then,

mq = m · ν .

So, to ensure that b > mq we will require that ν < b/m.
Before we continue, we note that fully understanding the dynamic of the spread of the virus and the dynamic of the

development of the disease (for the sake of knowing when we will need ICUs and for how long) is very challenging
and will probably require much more research and time. What we propose here is a worst-case analysis. The idea is
to adopt a pessimistic view and show that even under this pessimistic view, the health system is not likely to collapse.
We already made a pessimistic assumption since we did not take into account the facts that not all of the low-risk
population will get sick, and even those that will get sick will not get sick at the same time and will not need an ICU
at the same time.

Continuing our derivation, let p∗ be the current, unknown, percentage of positive cases among the low-risk popu-
lation and let k be the number of severe cases among the low-risk population from today until two weeks from now.
Assuming that people that are positive cases will either develop severe symptoms within two weeks or will never
develop severe symptoms, then we can estimate ν by k

p∗m . Note that again we are taking a worst-case view. Maybe
some of the severe cases in two weeks will be due to people that are not infected today but will get infected tomorrow.
This is even likely when the pandemic grows at an exponential rate. Nevertheless, to be on the safe side, we perform
a worst-case analysis. Based on this notation, we can upper bound the value of ν as follows:

Lemma 1 Fix some δ ∈ (0, 1) and let

k̃ = k +
√

2 log(1/δ) k + 4 log(1/δ) .

Then, with probability of at least 1− δ we have that

ν ≤ k̃

p∗m
.

The proof of the lemma follows directly from measure concentration bounds (see for example Lemma B.10 in [2]).
Based on this lemma, we can upper bound mq (with probability of at least 1− δ) by

mq ≤
k̃

p∗m
·m =

k̃

p∗

since even if all of the young population will get the virus, the number of severe cases will be the right hand side of
the above equation. Of course, in reality we expect mq to be much smaller than the above, both because not all of the
young population will get the virus and because not all the severe people will be sick at the same time. Nevertheless,
as mentioned previously we adopt a worst-case analysis.

The health system will be able to treat all of these severely sick people if b > mq , from each we obtain the
requirement:

p∗ >
k̃

b
.

Since k̃ and b are known, it is left to derive a method for ensuring that p∗ is large enough.
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This is a classical hypothesis testing problem: denote p̃ = k̃
b , the null hypothesis is that p∗ ≤ p̃, and the alternative

hypothesis is that p∗ > p̃. By sampling n persons, uniformly at random from the low-risk population, we would like
to find a cutoff value such that if the number of positive cases in our sample is above the cutoff, then we can reject the
null hypothesis with a confidence of, say, 95%.

While one can find cutoff values for different values of n by using tables of the Binomial distribution, the following
theorem specifies formulas for the sample size and for the cutoff value. One can verify by numerical calculations that
the theorem is rather tight in the relevant regime.

Theorem 1 For p̃ ∈ (0, 0.1), setting the sample size to be n = 4.438/p̃ and the cutoff to be 10, we can reject the
null hypothesis with a confidence of at least 95%. In other words, if we test n = 4.438 b/k̃ random people for the
virus 1 and find out that there are more than 10 positive cases, then with probability of at least 95% we know that the
risk-based model is safe.

The proof of the theorem follows directly from the following lemma.

Lemma 2 Fix δ ∈ (0, 1) and p̃ ∈ (0, 1/2). Suppose we sample n =
4
3 log(1/δ)

p̃(1−p̃) i.i.d. Bernoulli variables with

parameter p∗ and get at least
(

4
3(1−p̃) + 2

)
log(1/δ) positives. Then, with probability of at least 1 − δ we have that

p∗ ≥ p̃.

Proof If p∗ ≥ p̃ there is nothing to prove, so from now on we assume that p∗ < p̃ < 0.5. Denote by Sn the number of
positive cases. Observe that Sn is the sum of n Bernoulli variables, each of which has probability of p∗ to be positive.
Then, Bernstein’s inequality [1] tells us that for every t > 0,

P[Sn − np∗ > t] ≤ e−
t2/2

np∗(1−p∗)+t/3

Using p∗ < p̃ we get that

P[Sn − np∗ > t] ≤ e−
t2/2

np̃(1−p̃)+t/3 .

Setting

t = 2 log(1/δ) , n =
4
3 log(1/δ)

p̃(1− p̃)
we have that

np̃(1− p̃) = 4

3
log(1/δ) .

Therefore,

P[Sn − np∗ > 2 log(1/δ)] ≤ e−
t2/2

np̃(1−p̃)+t/3

= e
− (2 log(1/δ))2/2

4
3

log(1/δ)+ 2
3

log(1/δ)

= δ .

Using again p∗ < p̃ we also have that

P[Sn > np̃+ 2 log(1/δ)] ≤ P[Sn > np∗ + 2 log(1/δ)] .

Combining all of the above yields
P[Sn > np̃+ 2 log(1/δ)] ≤ δ .

1Note that current tests are PCR tests and not serology tests, which only strengthen our results. Furthermore, PCR tests are known to have a
negligible level of false positives.
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This means that the probability that Sn will be at least

np̃+ 2 log(1/δ) =

(
4

3(1− p̃)
+ 2

)
log(1/δ)

is at most δ, which concludes our proof.

Next, we may wonder under what conditions would the hypothesis testing likely succeed? we can argue that if
p∗ ≥ 4.438p̃we are likely to see at least 10 positive cases. The reasoning is based on the following thread. The average
positive cases we expect to see in a random population of size n is np∗, and the standard deviation is

√
np∗(1− p∗).

It follows that with high probability, the number of positive cases will be at least np∗ − 2
√
np∗(1− p∗) (we took two

standard deviations). It is easy to verify that if np∗ ≥ 19 then np∗ − 2
√
np∗(1− p∗) ≥ 10. Hence, if p∗ ≥ 4.438p̃,

we are likely to see at least 10 positive cases, and our validation of the risk-based model will succeed.

2.1 Estimating p∗ from pooled tests
A pooled test is obtained by taking a sample from T persons, mixing all of these samples, and searching for traces
of the virus. If the pooled test is positive, it means that at least 1 of the persons is positive. The following lemma
generalizes Lemma 2 to pooled tests.

Lemma 3 Fix δ ∈ (0, 1) and denote p̃ = k̃
b . Let T be a pool size and denote

φ̃ = 1− (1− p̃)T .

Suppose we sample n =
4
3 log(1/δ)

φ̃(1−φ̃) pools, uniformly at random from the low-risk population, test all of them for the

virus, and find out that there are at least
(

4
3(1−φ̃) + 2

)
log(1/δ) positive pools. Then, with probability of at least 1−δ

we have that p∗ ≥ p̃.

Proof Let φ∗ be the probability that for a random pool of size T we will have ST ≥ 1, where ST is the number of
positive cases in the pool. Note that by definition of the pool test, it ends up positive if and only if ST ≥ 1. Using
the same proof of Lemma 2, we have that for the n specified in the lemma, if we get at least

(
4

3(1−φ̃) + 2
)
log(1/δ)

positive pools then with probability of at least 1− δ we have that φ∗ ≥ φ̃. Next, observe that

φ∗ = P[ST ≥ 1] = 1− P[ST = 0] = 1− (1− p∗)T

Hence, if φ∗ ≥ φ̃ we have that
1− (1− p∗)T = φ∗ ≥ φ̃ = 1− (1− p̃)T .

Rearranging terms, we obtain that p∗ ≥ p̃.

The gain from the pool is clearly observed if p̃ T � 1. In this case, using the approximation 1− x ≈ e−x we have
that φ̃ ≈ p̃ T . Hence, the number of pooled tests we need is roughly T times less than the number of regular tests we
need, in order to show the same conclusions on p∗.

3 Discussion and Implications
In the event a risk-based quarantine approach would be contemplated by decision makers, the purpose of this document
is to provide decision makers a formal and tight bounds to investigate whether the health system can cope with the
number of severe cases that would reach ICU. Embedded in the reasoning is the idea of selective quarantine (based
on age groups and existing pre-conditions, but could be any other criteria) where the ”high-risk” group (the one we

4



suspect will have a high rate of severe cases) is quarantined and the other is allowed to spread the virus under certain
distancing protocols. The underlying premise is that a full population wide quarantine is not a solution in itself — it is
merely a step to buy time followed by a more managed (non brute-force) approach. The managed phase underlying our
thinking is to create herd immunity of the low-risk group in a controlled manner while keeping the economy going. It
is all about keeping the health system in check and not overwhelming its capacity to handle severe cases. The question
we ask in this document is whether we can estimate in advance, through sampling, that the number of severe cases
arising from the low-risk group would not overwhelm the system?

We conclude that this selective quarantine approach will work if p∗, the current percentage of positive cases among
the low-risk (non-quarantined) population, is not very small, relative to p̃ = k̃/bwhich is roughly the ratio between the
known number of severe cases from existing data and the capacity of the system (number of ICUs for example). Using
concentration bounds we show that if we randomly sample n ≈ 1/p̃ people from the low-risk population and find at
least few positive cases, then the selective quarantine approach will succeed. Lemma 2 provides the precise bound
with a 1−δ confidence. In Lemma 3 we extend the result to include “pooled” sampling as well. We also conclude that
if we have other means of estimating p∗ we can use the requirement p∗ ≥ k̃/b in order to estimate the needed capacity
b. For example, random sampling of a population of 2000 individuals in Iceland indicated that p∗ ≈ 0.01 from which
we can deduce that b ≈ 100k̃ ICUs should suffice for the low-risk population.

A critical element (besides the prevalence p∗) in our model is the random variable k which represents the number
of severe cases among the low-risk group. The amount of medical resources bmonotonically increases with k, thus, for
an effective cut-off between low and high risk it would be very useful to obtain information (which today is missing)
about the people that require intensive life support such as age distribution and distribution over pre-existing conditions
in order to fine-tune the definition of the low-risk group such that k would be as small as possible.

It is worth noting that we focused on what is ”safe” for the health system in the sense of how to estimate the number
of severe cases that would be low enough not to overwhelm the ICUs. We ignored the fact that some severe cases could
end up in the mortality statistics even when given proper care. In fact there are two probabilities to estimate (i) the
probability of being in the ”severe” category among the low-risk group, and (ii) the probability of mortality given
proper care. We have bounded the former and ignored the latter. The reason for doing so is that the latter is beyond
the scope of this paper because it is essentially a moral tradeoff between ”safety” and ”usefulness” that is employed
in every aspect of society. For example, society does not put a lockdown on passenger car use in order to significantly
reduce car accidents even though such a lockdown will save lives. Likewise, governments do not allocate infinite
budgets for the health system even though there is a correlation between increased investments and saving lives.

As a final remark, going out of quarantine is a choice not an obligation. This is no different than people that are
afraid of flights and decide not to go on an airplane. Families can decide to stay quarantined either as an extra safety
measure or if some members of the family are from the high risk group while the others are from the low risk group.
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