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From Associative Memories to Deep Networks

Tomaso Poggio

Abstract

About fifty years ago, holography was proposed as a model of associative memory. Associative
memories with similar properties were soon after implemented as simple networks of threshold neu-
rons by Willshaw and Longuet-Higgins. In these pages | will show that today’s deep nets are an
incremental improvement of the original associative networks. Thinking about deep learning in terms
of associative networks provides a more realistic and sober perspective on the promises of deep learn-
ing and on its role in eventually understanding human intelligence. As a bonus, this discussion also
uncovers connections with several interesting topics in applied math: random features, random pro-
jections, neural ensembles, randomized kernels, memory and generalization, vector quantization and
hierarchical vector quantization, random vectors and orthogonal basis, NTK and radial kernels.
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Deep Networks as Associative Nets

Tomaso Poggio

Abstract

About fifty years ago, holography was proposed as a model of associative memory.
Associative memories with similar properties were soon after implemented as simple networks
of threshold neurons by Willshaw and Longuet-Higgins. In these pages I will show that today’s
deep nets are an incremental improvement of the original associative networks. Thinking
about deep learning in terms of associative networks provides a more realistic and sober
perspective on the promises of deep learning and on its role in eventually understanding human
intelligence. As a bonus, this discussion also uncovers connections with several interesting
topics in applied math: random features, random projections, neural ensembles, randomized
kernels, memory and generalization, vector quantization and hierarchical vector quantization,
random vectors and orthogonal basis, NTK and radial kernels.

1 Introduction

The plan of this brief note is to show that today’s deep nets can be regarded as refurbishing the old
networks proposed fifty year ago as associative memories, with properties similar to holography.
After this first part, I will discuss a number of intriguing relations between random features,
random projections, neural ensembles, randomized kernels, memory and generalization, vector
quantization and hierarchical vector quantization, random vectors and orthogonal basis, NTK
and radial kernels. The third and final part of this note discusses briefly the role that associative,
recurrent and deep, networks may play in our attempts to understand human intelligence.

2 From associative nets to deep nets

2.1 Willshaw Nets

Holograms store information in the form of an optical interference pattern recorded in a pho-
tosensitive optical material. Light from a single laser beam illuminates a noise-like reference
image (originally produced from ground glass) as well as the pattern to be stored, producing an
interference pattern stored in the hologram. Many thousand such pairs of associations can be
recorded on a single hologram. Each stored data can then be read-out from the hologram by
using as input its associated reference pattern.
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Fig. 4. An associative net.

Figure 1: A original figure from Willshaw et al., [1] showing an associative memory network.
The matriz of connections correspond to the matric W of weights in a shallow network, see text.
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The basic associative memory Axy can be modeled as a one layer “shallow” network [I]
storing the correlation matrix between input and output. Figure [I| shows the training phase of
the network. In the read-out phase, the output y can be retrieved by inputting the associated
x to the network, that is by computing Axy o« (Willshaw computed R o Axy oz where R
represents a set of thresholds on the outputs to improve accuracy retrieval in a otherwise linear
network).

The basic idea is as follows. Suppose that we want to associate each patterny,, n=1,--- N
to a noise-like key vector x,,, where 2,y € R” and N < D. The noise-like assumption on the z,, is
equivalent to assuming that X X7 = I, where X is the matrix of all the inputs (z,, are the columns
of X). The optimal least-square solution of the equation AX =Y is A = Y XT(XXT)"1 =y X7,
Thus, if I want to retrieve y;, I input the key z; to the network and get Az; ~ y; ;0; ; = y;.

Of course, in dealing with binary vectors, this linear associative network can be improved by
using thresholds to clean up the output as Willshaw did.

In any case, this is still a one layer network, quite different from modern multilayer networks.
It turns out that Willshaw experimented “de facto” with multilayer networks when he found
that a recurrent version of his one layer network performed quite well. As he reported “..it was
found by computer simulation...that the initial response to a given cue could be improved by
feeding the output back into the associative net and continuing until the sequence of outputs so
generated converged onto a single pattern...”. Furthermore, “The same "cleaning-up behavior"
was seen when patterns were stored in sequence. Pattern A was associated with B. B with C. C
with D. and so on, the last pattern being stored with A. When a fragment of A was used as a cue
and then the output used as the next input, after a few passes the sequence of retrieved patterns
converged onto the stored sequence, even when the initial cue was a very poor representation of
one of the stored patterns. Simulation experiments were performed to see what cycle of outputs
would result from any arbitrarily selected cue. (Because each input determines the next output
and there is only a finite number of possible outputs, the sequence of outputs must eventually
lead into a cycle.)..”

It is quite easy to see what is going on. Using the algorithm above, one can associate x;
to 9 and xo to z3 and so on, performing the kind of cyclic retrieval described in the second
paragraph above. Of course a recurrent network is just a multilayer network with shared weights
across different layers[2]. Thus fifty years ago we had already the idea and the implementation of
single layer as well as recurrent associative networks !

2.2 Shallow, deep and recurrent networks

Is there something more that we can say about associative nets? The following is a simple
additional observation about depth.
As we already mentioned, the optimal least square solution of AX =Y is A = YXT =
Y XT(XXT)~1. This suggests (among other possibilities) a 2-layer network with W; = (X X7)~!
and a read-out layer
Wy =YXT, (1)
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Figure 2: Setting K = I — XX allows the recurrent network as well as its unrolled deep network
counterpart to compute (X XT)~L,

Interestingly, the computation of Wi = (X X7)~! can be performed by a recurrent network.
Assume that the weight matrix of the recurrent network is set to

W;=(I-XXT), VYi=1,---,L—1, (2)

with the last read-out layer set to be Wy, = Y X7 Since division of operators can be approximated
by its power expansion, that is ﬁ = (I+K+K?+---), arecurrent network as shown in Figure
computes (I —K)~!. If K = I — XX the recurrent network computes (X X7)~!. Alternatively,
a recurrent network can be replaced by a deep residual network (ResNet) of L — 1 layers with
the same K (see Figure and [3, 2]. Convergence requires the condition || XX — I|| < 1, which
is usually satisfied if the weight matrices are normalized (for instance by batch normalization).
Estimates about retrieval errors in such associative memories and ways to reduce them by using
thresholds are given in [, [4].

Thus training a recurrent network under the square loss on a training set (X,Y’) by unrolling
it in L layers and imposing shared weights for the first L — 1 layers should converge to the
quasi-optimal solution suggested by Equations [I] and

So far I have described linear networks. The RELU nonlinearity after unit summation can be
added as follows. Let us assume a deep network written as

fle) = (Veo(Vp—1---o(V12))) (3)
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where o(x) = o’(x)z, which captures the homogeneity property of the RELU activation. The
equation can be rewritten for each training example as

f(zj) =VeDpa(z;)Vp—1--- Vi1 Dy () Vi - - - D1 () Viz; (4)

where Dy(x;) is a diagonal matrix with 0 and 1 entries depending on whether the corresponding
RELU is active or not for the specific input x;, that is Dy_1(x;) = diag[o’(Nk(z;)] with Ny(z;)
the input to layer k.

The presence of the D(x) matrices makes the networks much more powerful in terms of
approximating any continous functions instead of just linear functions. It also affectss the linear
analysis described earlier.

Remarks

e The convergence of a recurrent network for L. — oo — where L is the number of iterations — is
guaranteed by Brower’s fixed point theorem if the operator Tz = Wz is non-expansive, that
is if ||Tx — Ty|| < ||z — y||- The fact that the operator corresponding to the transformation
of each layer of the network is non-expanding follows from the fact that ||[Wz|| < ||W]]||z]],
assuming that ||IW|| = 1 because of batch normalization(BN) (see [5] for the importance
of BN). Notice that this holds for linear networks but also for networks with RELU
nonlinearities. If the inputs x satisfy ||z|| < 1 the set of fixed points of T contains a unique
minimum norm element (see [6])

e Deep networks with L — 1 layers of identical input and output dimensionality and shared
weights across layers are equivalent to a one-layer recurrent network run for L — 1 iterations.
Empirically it seems[2] that non-shared weights give only a small advantage despite the
much larger number of parameters with respect to equivalent shared-weights networks.
From this perspective, multiple layers may be required only to exploit the blessing of
compositionality[7, 8]. In other words, depth’s main purpose may be to allow pooling at
certain stages (even just by subsampling).

e Consider instead of W; j = (XXT), ; the choice

sz = K mlax] Z )\Mb[ @f :E]) (I)(xl)CI)T(xj) (5)

1
where the (infinite) column vector ®(z) = A2 ¢¢(z) and A, are the eigenvalues of the integral
operator associated with K. A shift-invariant kernel such as the Gaussian kernel has ¢y ()
which are orthonormal Fourier eigenfunctions. It can be approximated by random Fourier
features e ™? with w drawn from a Gaussian distribution [9].

e The “holographic” scheme of using a “noiselike” key vector associated with a signal is
almost exactly the algorithm used in the spread spectrum CDMA techniques used to encode
and decode cell phones communication.
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3 Discussion

We have described how deep and recurrent networks can be regarded as stacked associative
one-layer networks of the Willshaw type. This perpective is interesting for two main reasons.
First, it connects deep networks with several classical ideas such as random quasi-orthogonal basis,
kernels, randomized RKHS features, the key role of normalization and compositionality. Second,
if deep networks are “just” associative memories, what is their role in explaining intelligence? In
other words: is associative memory a key part of human intelligence?

3.1 Connections between deep learning and signal processing

e The old associative networks assumed noise-like inputs that are approximately orthogonal

(like in the original concept of holography implementing an associative memory), that
is xiij = 0;j. A recent analysis [0] of deep network trained under the square loss
identifies a bias towards orthogonality induced by normalization techniques such as batch
normalization. Quasi-orthogonality makes it easy to invert a deep network as it is required
in an autoencoder. Notions related to random projections and the Johnson-Lindestrauss

lemma may also be relevant.

e I did not say much about convolutional networks. The architecture of convolutional
networks reflects a specific type of Directed Acyclic Graph (DAG). It turns out that
all functions of several variables can be decomposed according to one or more DAGs
as compositional functions, that is functions of functions[§]. Often such decompositions
satisfy a hierarchical locality condition: even if the dimension of the overall function is
arbitrarily high, the constituent functions are of small, bounded dimensionality. For these
functions and these decompositions, approximation theory proves[8] that deep networks
reflecting the underlying compositional DAG can avoid the curse of dimensionality, whereas
shallow networks cannot. Convolutional networks are an example of this (locality of the
kernel rather than weight sharing is the key property in avoiding exponential complexity).
Not accidentally, convolutional networks represent one of the main success stories of deep
learning. Thus the main reason for deep networks as opposed to shallow, recurrent networks
may in fact be to escape the curse of dimensionality by exploiting compositionality: this
requires what we called earlier “pooling”, that is stages at which the outputs of constituents
functions undergoes aggregation , as in Figure

e Compositional architectures can be regarded as reflecting iterated functional relations of
the kind “compose parts” as in f(z1,x2,23) = f1(fo(x2,x3), f3(x3)), where f; reflects the
composition of fo and f3 and fo composes x1 and zo. A deep associative network of this
type is then closely related to what is called “hierachical vector quantization (VQ)”[10].
The similarity is especially strong if we assume weight matrices that are derived from
RBF kernels. This corresponds to memorizing, at the lowest level, the association of
basic features and then the association of their associations (think of hierarchical JPEG
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Figure 3: The figure shows the graph of a function of eight variables with constituent functions
of dimension two.

encoding)ﬂ

e The claim that deep networks are quite similar to “linear” RBF networks is supported by
recent results[I1] on the Neural Tangent Kernel (NTK). It turns out that under certain
training conditions (e.g. starting with “largish” norms for the matrices weights) a deep
network converges to a set of weight matrices that corresponds to a standard kernel machine
with the NTK kernel. Furthermore, classification performance is quite good — though not
the best possible — and the NTK itself is equivalent[12] to a classical RBF kernel, the
Laplacian.

e An alternative to deep networks as models of the brain are neural assemblies. The idea
received new life from some recent very interesting work [I3]. The obvious question is
about connections between neural assemblies and associative memories.

3.2 Is human intelligence “just” associative memory?

Thirty years ago I wrote a paper[14] proposing ¢ that much information processing in the brain
is performed through modules that are similar to enhanced look-up tables”. I had in mind
associative memories and implentations such as RBF networks (sedﬂ Equation : for instance for
a Gaussian kernel, increasing o changes the network from a look-up table kind of memory, that

!Starting from a small number of primitive features, there is a hierarchy of more complex features each one
being an association of simple features. If the simple features are stored then only some of the more complex ones
— only the ones which are used — need to be stored as associations. This is similar to a dictionary storing only some

of the infite number of words that may be created from a finite alphabet of letters.
(@—=;)2
2RBF networks are usually thought as Gaussian unit computing e~ «2 _ where x; is the “center” of unit 4; in

Equation [5] the network reflect the dual form of a RBF network in terms of the Fourier features of the Gaussian.
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recognizes only the training data, to a “learning” system that generalizes beyond the training
data.

Willshaw only looked at his network as a memory. It was better than a pure look-up table
since it could work well with noisy or partial inputs but its function was to memorize and retrieve.
The machine learning and neural network community has looked only at generalization beyond
the training data. In fact, the boundary between associative networks — shallow or deep — and
learning networks is very thin, since the underlying machinery is very much the same and the
difference is just in parameter values.

This was the reason I wrote that the idea of intelligence grounded on associative memory
“suggests some possibly interesting ideas about the evolution of intelligence...There is a duality
between computation and memory. ... Given that the brain probably has a prodigeous amount of
memory ... is it possible that part of intelligence may be built from a set of interpolating look-up
look-up tables? One advantage of this point of view is to make perhaps easier to understand
how intelligence may have evolved from simple associative reflexes...”.

Clearly human intelligence is not just associative memory. Because of the previous discussion
this also means that intelligence is not just deep learning. It is possible, however, that the
intelligence of a dog may be explainable in terms of associative memory modules or equivalently
deep or shallow networks. It is also very likely that human intelligence evolved from associative
memories and that associative networks are still an important part of how we think, from visual
and speech recognition to Kahneman’s System One which is fast, intuitive, and emotional whereas
System Two is slower, more deliberative, and more logical. The question then is: how did logic
and language based thinking evolve from associative memories? What are the differences in the
circuits underlying them with respect to associative networks? I regard this as the core question
in our quest to understand human intelligence and replicate it in machines.
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