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Abstract

We analyze deep ReLU neural networks trained with mini-batch Stochastic Gra-
dient Descent (SGD) and weight decay. We study the source of SGD noise and
prove that when training with weight decay, the only convergence points of SGD
are zero functions. Furthermore, we show, both theoretically and empirically, that
when training a neural network using SGD with a small batch size, the resulting
weight matrices are expected to be of small rank. Our analysis relies on a minimal
set of assumptions and the neural networks may include residual connections, as
well as batch normalization layers.

1 Introduction

Over the past few years, neural networks have challenged machine learning theory with several
mysteries. We consider two of them here that are, to our knowledge, so far unsolved. The first is
about the mathematical reasons for a bias in Stochastic Gradient Descent (SGD) towards neural
networks with low-rank weight matrices, a fact which has been empirically observed (see Timor et al.
[2022] and references therein). The second is regarding the role (see Li et al. [2021] and references
therein) and origin of SGD noise. The origin of the SGD noise represents an especially important and
rather neglected question. In this paper, we report a simple observation that solves both mysteries
and, somewhat surprisingly, shows that they have the same mathematical root. The observation is
that the matrix ∂fW

∂W i is a matrix of rank ≤ 1, where fW is a deep ReLU network with a scalar output
and weight matrices {W i}i∈I (I is some finite set of indices)1.

1.1 Related Work

Stochastic gradient descent (SGD) is widely used for optimizing deep models and has become a
standard approach in the field [Bottou, 1991]. Originally designed to address the computational
challenges of gradient descent (GD), recent research indicates that SGD also introduces an important
implicit regularization effect. This regularization prevents overparameterized models from converging
to suboptimal minima that may not generalize well [Zhang et al., 2016, Jastrzębski et al., 2017, Keskar
et al., 2017, Zhu et al., 2019].

Empirical studies have revealed several key findings about SGD. First, SGD outperforms GD in
various scenarios Zhu et al. [2019]. Second, small-batch SGD tends to generalize better than large-
batch SGD [Hoffer et al., 2017, Keskar et al., 2017]. Third, gradient descent with additional noise
fails to match the performance of SGD Zhu et al. [2019]. However, despite extensive research efforts,
the implicit regularization induced by the noise in SGD remains not fully understood. Furthermore,

1When fW outputs a k-dimensional vector, each output component of the tensor corresponding to ∂f
∂W i is a

matrix of rank at most 1.
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the source of this noise during SGD training, which persists even for extended periods long after
the presumed convergence of the process, remains a topic that has received little attention and lacks
comprehensive understanding. A separate focus of considerable research in recent years has been the
implicit bias in linear neural networks towards rank minimization. Most of the interest was on the
matrix factorization problem, which corresponds to training a depth-2 linear neural network with
multiple outputs w.r.t. the square loss. As described by Timor et al. [2022], Gunasekar et al. [2017]
initially conjectured that the implicit regularization in matrix factorization can be characterized by the
nuclear norm of the corresponding linear predictor. This conjecture was formally refuted by Li et al.
[2020]. Razin and Cohen [2020] conjectured that the implicit regularization in matrix factorization
can be explained by rank minimization, and also hypothesized that some notion of rank minimization
may be key to explaining generalization in deep learning. Li et al. [2020] established evidence
that the implicit regularization in matrix factorization is a heuristic for rank minimization. Beyond
factorization problems, Ji and Telgarsky [2020] showed that in linear networks of output dimension 1,
gradient flow (GF) w.r.t. exponentially-tailed classification losses converges to networks where the
weight matrix of every layer is of rank 1.

However, with nonlinear neural networks, things are less clear. Empirically, a series of papers [Denton
et al., 2014, Alvarez and Salzmann, 2017, Tukan et al., 2021, Yu et al., 2017, Arora et al., 2018]
showed that replacing the weight matrices by low-rank approximations results in only a small drop
in accuracy. This suggests that the weight matrices in practice may be close to low-rank matrices.
However, whether they provably behave this way remains unclear. Timor et al. [2022] show that
for nonlinear ReLU networks, GF does not minimize rank. They also argue that ReLU networks of
sufficient depth can have low-rank solutions under ℓ2 norm minimization. This interesting result,
however, applies to layers added to a network that already solves the problem and may not have
any low-rank bias. It is not directly related to the mechanism described in this paper, which is more
generic and applies to all layers in the network.

1.2 Contributions

We provide a mathematical analysis of the origin of SGD noise and of the implicit rank-minimization
of SGD. We analyze deep ReLU networks trained with mini-batch stochastic gradient descent and
regularization (i.e., weight decay). Our analysis is fairly generic: the neural networks may include
linear layers, residual connections, and batch normalization layers. In addition, the loss function is
only assumed to be differentiable. The central contributions are:

• In Props. 1-2, we study the source of SGD noise. The result shows that SGD noise must be
always present, even asymptotically, regardless of the batch size, as long as we incorporate weight
decay. Thus, SGD noise is a generic property; this also means that, generically, there is never
convergence of SGD.

• In Thm. 1 we prove that mini-batch SGD has an implicit bias towards networks with low-rank
matrices. This theorem connects batch size, weight decay, optimization and rank.

• In Sec. 3.2, we theoretically predict that the batch size, weight decay and learning rate act as
low-rank regularizers. These predictions are later validated empirically in Sec. 4.

2 Problem Setup

We consider the problem of training a model for a standard classification or regression problem.
Formally, the target task is defined by a distribution P over samples (x, y) ∈ X ×Y , where X ⊂ Rn

is the instance space, and Y ⊂ Rk is a label space.

A function fW ∈ F ⊂ {f ′ : X → Rk} assigns a prediction to an input point x ∈ X , and its
performance on the distribution P is measured by the risk

LP (fW ) = E(x,y)∼P [ℓ(fW (x), y)], (1)

where ℓ : Rk×Y → [0,∞) is a non-negative, differentiable, loss function (e.g., MSE or cross-entropy
losses). For simplicity, throughout the paper, we focus on the case where k = 1.

Since we do not have direct access to the full population distribution P , the goal is to learn a predictor,
fW , from some balanced training data S = {(xi, yi)}mi=1 of independent and identically distributed
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(i.i.d.) samples drawn from P along with regularization that controls the complexity of the learned
model. Namely, we intend to minimize the regularized empirical risk

Lλ
S(fW ) =

1

m

m∑
i=1

ℓ(fW (xi), yi) + λ∥W∥22, (2)

where λ > 0 is predefined hyperparameter, controlling the amount of regularization.

2.1 Architectures and Training

In this work, the function fW represents a neural network, consisting of a set of layers of weights
interlaced with ReLU units. We employ a fairly generic definition of a neural network, that includes
linear layers, residual connections and batch normalization layers. To include normalization layers,
we extend fW ’s input to be (x; X̃ ), where x ∈ Rn and X̃ = {xij}Bj=1 ⊂ Rn is a batch of samples (see
details below). For simplicity, fW (x; X̃ ) may denote a network with or without batch normalization
layers, and specifically, fW (x) denotes a network without normalization layers. When X̃ is clear
from context, we write f̃W (x) := fW (x; X̃ ).
Optimization. In this work, we consider optimizing fW using mini-batch stochastic gradient
descent (SGD), possibly with detaching certain layers. Namely, we aim at minimizing the regularized
empirical risk LS(fW ) by applying SGD for a certain number of iterations. We initialize W0 using a
standard initialization procedure and iteratively update Wt. At each iteration, we sample a subset

S̃ = {(xij , yij)}Bj=1 ⊂ S uniformly at random and update Wt+1 ← Wt − ηt ·
∂̄LS̃(fWt ( · ;X̃ ))

∂W ,
where X̃ = {xij}Bj=1 and ηt > 0 is our learning rate at iteration t. Here, fW ( · ; X̃ ) : Rn → R
is the function given by fW (x; X̃ ) for a fixed value of X̃ . Furthermore, for a given function
gθ = gLθ ◦ . . . g1θ : Rn → Rk where {gijθ }rj=1 are detached, ∂̄gθ(z)

∂θ denotes the pseudo gradient of gθ,
which is computed using the chain rule, while treating {gijθ }rj=1 as independent of θ.

Graph structure. Formally, fW is as a directed acyclic graph (DAG) G = (V,E), where V =
{v1, . . . , vL} consists of the layers within the network and each edge eij = (vi, vj) ∈ E specifies
a connection between two layers. Each layer is a function vi : Rn→di and each connection holds a
weight W ij ∈ Rdi×dj . The layers are divided into three categories: the input layer v1, the output
layer and intermediate layers. The output layer is not connected to any other layer and no one of the
layers connects with the input layer. Each layer vi is evaluated as follows

vi(x; X̃ ) = σ(ni(
∑

j∈pred(i)

W ij · vj(x; X̃ ); X̃ )), (3)

except for the last layer vL that computes

fW (x; X̃ ) = vL(x; X̃ ) =
∑

j∈pred(L)

WLj · vj(x; X̃ ), (4)

where pred(i) the set of indices j, such that (vi, vj) ∈ E. Here, σ is an element-wise activation
function (e.g., ReLU, Leaky ReLU, sigmoid) and ni is either the identity function ni(z; X̃ ) = z or
batch normalization (see below).

In this work, the weight matrices W pq could be trainable, (vp, vq) ∈ ET (e.g., fully-connected
layers), or constant, (vp, vq) /∈ ET (e.g., residual connections). Throughout the analysis, we consider
paths within the graph G, denoted by π = (π0, . . . , πT ), where π0 = 1, πT = L and for all
i = 0, . . . , T − 1 : (vπi

, vπi+1
) ∈ E.

Normalization layers. The neural networks may also include batch normalization layers Ioffe and
Szegedy [2015]. Namely,

nl(vl(x; X̃ ); X̃ ) = γl ·Al(X̃ ) · (vl(x; X̃ )− bl(X̃ )) + 1 · βl

Al(X̃ ) = diag

((√
Varx̂∼U [X̃ ](vl(x̂; X̃ )j)

)−1
)dl

j=1

bl(X̃ ) = Ex̂∼U [X̃ ][vl(x̂; X̃ )],

(5)
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where γl, βl ∈ R are trainable scale and shift parameters and 1 := (1, . . . , 1). To simplify the analysis,
we detach (also known as stop-grad [Grill et al., 2020]) the matrices Al(X̃ ) during backpropagation at
any step during training. Namely, we treat ∂̄Al(X̃ )

∂W = 0 in order to compute the training updates. We
note that detaching is a well-established approach for training a network with normalization [Wiesler
et al., 2014, Ioffe, 2017, Raiko et al., 2012, Povey et al., 2014, Xu et al., 2019, Gouk et al., 2021]. In
fact, Xu et al. [2019] showed that detaching the variance term of layer normalization is competitive
and even improves the performance on various tasks.

At test time, to evaluate a given network on a given input x, we use a f(x; X̂ ), where X̂ = {xi}mi=1
is the full training data. We note that the evaluation process of the network with this kind of
normalization is the same as with standard batch normalization layers.

3 Theoretical Results

In this section, we describe the main theoretical results of this work. In Section 3.1, we show that the
rank one constraint is the source of SGD noise. In Section 3.2 we provide a brief analysis showing
that mini-batch SGD implicitly learns neural networks with low-rank matrices. Proofs are provided
in Appendix B.

3.1 Degeneracy and the Origin of SGD Noise

The term ‘SGD noise’ refers to the inherent inability of SGD to converge to a stationary solution for
the weight matrices that is the same across different mini-batches. In this section, we characterize
the convergence of mini-batch SGD. Our results are essentially impossibility results that show that
convergence of SGD takes place only when the network is zero. This implies that asymptotic noise is
generically unavoidable in practical cases when training is successful. For simplicity, we focus on
normalization-free univariate neural networks fW : Rn → R and assume that xi ̸= 0 for all i ∈ [m].

We start by spelling out the conditions for convergence of SGD. We note that at convergence, we have
∇WpqLS̃(fW ) = 0 for all pairs (vp, vq) ∈ ET and mini-batches S̃ ⊂ S of size B < m. Specifically,
we we can write

0 = ∇WpqLλ
S̃
(fW ) =

1

B

∑
(x,y)∈S̃

∂ℓ(fW (x), y)

∂fW (x)
· ∂fW (x)

∂W pq
+ 2λW pq. (6)

Suppose we have two batches S̃1, S̃2 ⊂ S of size B that differ by only one sample. We denote the
unique sample of each batch by (xi, yi) and (xj , yj) respectively. We notice that

0 = ∇WpqLλ
S̃1
(fW )−∇WpqLλ

S̃2
(fW )

=
∂ℓ(fW (xi), yi)

∂fW (xi)
· ∂fW (xi)

∂W pq
− ∂ℓ(fW (xj), yj)

∂fW (xj)
· ∂fW (xj)

∂W pq
.

(7)

Therefore, we conclude that for all i, j ∈ [m]

Mpq =
∂ℓ(fW (xi), yi)

∂fW (xi)
· ∂fW (xi)

∂W pq
=

∂ℓ(fW (xj), yj)

∂fW (xj)
· ∂fW (xj)

∂W pq
. (8)

Hence, for all (vp, vq) ∈ ET and i ∈ [m],

∂ℓ(fW (xi), yi)

∂fW (xi)
· ∂fW (xi)

∂W pq
+ 2λW pq = Mpq + 2λW pq = 0. (9)

Therefore, unless λ = 0 or ∀ (vp, vq) ∈ ET : W pq = 0, we conclude that ∂ℓ(fW (xi),yi)
∂fW (xi)

̸= 0 for all

i ∈ [m]. In this case, we also obtain that { ∂fW (xi)
∂vec(Wpq)}

m
i=1 are collinear vectors by Eq. 8.

Therefore, any convergence point of training a neural network using mini-batch SGD along with
weight decay is highly degenerate and does not perfectly fit any one of the training labels. To better
understand the essence of this degeneracy, we provide the following proposition, which is specialized
for ReLU networks.
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Proposition 1 (λ > 0). Let ℓ(a, b) be a differentiable loss function, λ > 0, and let fW (x) be a ReLU
neural network, where {(vp, v1) ∈ E | vp ∈ V } ⊂ ET . Let W be a convergence point of mini-batch
SGD for minimizing Lλ

S(fW ). Then, either fW ≡ 0 or {xi}mi=1 are collinear vectors.

The above proposition shows that unless the training samples lie on a one-dimensional linear space,
at convergence, SGD learns the zero function when training with weight decay. Since both cases are
unrealistic, we conclude that convergence is impossible in any practical scenario.

In the following proposition, we look at the convergence of SGD when training without weight decay.
Proposition 2 (λ = 0). Let ℓ(a, b) be a differentiable loss function, λ = 0, and let fW (x) be a
ReLU neural network, where {(vp, v1) ∈ E | vp ∈ V } ⊂ ET . Let W be a convergence point of
mini-batch SGD for minimizing Lλ

S(fW ). Assume that {xi}mi=1 are not collinear. Then, for any
i ∈ [m], for which ∂ℓ(fW (xi),yi)

∂fW (xi)
̸= 0, we have, fW (xi) = 0. In particular, if ℓ is convex and

∀ b ∈ R ∄ a∗ ∈ R : ℓ(a∗, b) = infa ℓ(a, b), then, ∀ i ∈ [m] : fW (xi) = 0.

The above proposition shows that at convergence, the neural network outputs zero for any training
sample that it does not perfectly fit (i.e., ∂ℓ(fW (xi),yi)

∂fW (xi)
̸= 0). In particular, if ℓ is an exponential-type

loss function (e.g., binary cross-entropy, logistic loss and exponential loss), ℓ(a, b) has no minima a
for any b ∈ R, and therefore, the only possible convergent points are ones for which fW (xi) = 0
across all i ∈ [m]. While theoretically convergence to a non-zero function is not guaranteed, in
practice training without weight decay can still fall into the regime of ’almost convergence’, in which
maxi∈[m]

∣∣∂ℓ(fW (xi),yi)
∂fW (xi)

∣∣ is tiny and the training steps −η · ∂ℓ(fW (xi),yi)
∂fW (xi)

· ∂fW (xi)
∂Wpq are very small as

a result. In general, by increasing the size of the network (i.e., the width or the depth), we should
expect the term maxi∈[m]

∣∣∂ℓ(fW (xi),yi)
∂fW (xi)

∣∣ to tend to zero (if the network is trained successfully). On
the other hand, with the MSE loss we may have convergence when ∀ i ∈ [m] : fW (xi) = yi (in this
case ∀ i ∈ [m] : ∂ℓ(fW (xi),yi)

∂fW (xi)
= 0).

It is worth noting that our analysis critically depends on using SGD instead of GD during optimization.
While many papers analyze the training dynamics and critical points of GD, the solutions of SGD are
highly degenerate and will, in general, look different from the solutions of GD. For instance, it is
impossible to derive Eq. 8 without relying on optimization through mini-batch SGD, and without
weight decay, we could not argue that W pq is proportional to the low-rank matrix Mpq . Finally, we
note that the analysis above is independent of the batch size as long as it is strictly smaller than the
full dataset’s size. As follows from Eq. 9 the convergence points of mini-batch SGD are equivalent to
the convergence points of SGD with batch size 1.

3.2 Implicit Rank Minimization

In the previous section we showed that at convergence, the neural network is highly degenerate and
the trainable matrices along the network are zero matrices. As a next step, we extend the discussion
and study rank minimization in non-convergent points. Specifically, we demonstrate an implicit bias
of mini-batch SGD to learn weight matrices of small rank, depending on the batch size, the weight
decay and its ability to successfully minimize the objective function. In the following theorem, we
introduce an upper bound on the distance of the various weights matrices within the network from
matrices of rank≤ B∗ as a function of the progress of the optimization. The theorem holds for neural
network with or without batch normalization.
Theorem 1. Let ∥ · ∥ be any matrix norm. Let fW (x, X̃ ) be a ReLU neural network and W pq be a
given matrix within fW and let B∗ < m be a natural number. Then,

min
V ∈Rdp×dq :
rank(V )≤B∗

∥W pq − V ∥ ≤ 1

2λ
min

S̃⊂S: |S̃|=B∗
∥∇WpqLλ

S̃
(f̃W )∥ (10)

The theorem above provides an upper bound on the minimal distance between the various weight
matrices in the network W pq and matrices of rank at most B∗. The upper bound is proportional to
the minimal norm (w.r.t. the selection of the batch) of the gradient of a regularized risk evaluated on
a batch of size B∗ and essentially depends on the training hyperparameters (e.g., batch size, learning
rate, weight decay, etc’). Therefore, it can be used to draw predictions about the relationships between
certain hyperparameters, the rank and the performance.
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Several interesting predictions follow the theorem above.

Rank and batch size. We note that SGD training with batches of size B directly minimizes the fol-
lowing objective AvgS̃⊂S: |S̃|=B [∥∇WpqLλ

S̃
(fW )∥] (for all (p, q) ∈ E). This quantity upper bounds

the term minS̃⊂S: |S̃|=B ∥∇WpqLλ
S̃
(fW )∥ from Equation 10. Therefore, if training successfully

minimizes AvgS̃⊂S: |S̃|=B [∥∇WpqLλ
S̃
(fW )∥], then, we expect the matrix W pq to be close to a matrix

of rank ≤ B. Hence, we predict that the batch size regularizes the rank of the various matrices in
the network (when fixing the rest of the hyperparameters). Namely, we expect training with smaller
batch sizes to produce matrices of smaller ranks. Specifically, in contrast to SGD with small batch
sizes, we expect that GD would not regularize the rank of the network’s matrices (unless the training
data is very small).

Rank and weight decay. The dependence of the bound on λ is twofold: through the mul-
tiplicative term λ−1 and through the term minS̃⊂S: |S̃|=B∗ ∥∇WpqLλ

S̃
(fW ))∥ that indirectly de-

pends on λ. For two degrees of weight decay λ2 > λ1 > 0, as long as SGD minimizes
minS̃⊂S: |S̃|=B∗ ∥∇WpqLλi

S̃
(fW )∥ to a small value (for both λ1, λ2), then we expect the matri-

ces W pq to be of smaller ranks when utilizing λ2 > λ1. Therefore, we predict that the ranks of the
matrices should decrease as we increase λ. Furthermore, if λ = 0, then the bound is infinite and
we lose the low-rank constraint. Therefore, we predict that without weight decay we do not have an
implicit regularization towards rank minimization.

Rank and learning rate. Typically, unless the learning rate is not too large, when training a model
with larger learning rates we should expect the objective’s gradient to be of a smaller norm. Therefore,
for larger values of η, we should expect minS̃⊂S: |S̃|=B ∥∇WpqLλ

S̃
(fW )∥ to be smaller. Therefore,

similar to the batch size, we predict that the learning rate also induces a regularization effect, for
which, with larger learning rates we learn matrices of smaller rank. Furthermore, as we discussed
and observe empirically, when training with small batch sizes we expect to learn matrices of very
small ranks. We note that neural networks with matrices of very low ranks typically under perform
on the training set, due to their limited expressivity. Therefore, we predict that to effectively train a
model with smaller batch sizes it is necessary to decrease the learning rate accordingly, similar to
previous empirical observations Krizhevsky [2014], Goyal et al. [2018].

4 Experiments

In this section we experimentally analyze the convergence (and non-convergence) of training neural
networks with SGD. In addition, we empirically study the implicit bias towards low-rank in deep
ReLU neural networks. Throughout the experiments we extensively vary different hyperparameters
(e.g., the learning rate, weight decay, batch normalization, batch size) and study their effect on the
rank of the various matrices in the network2.

4.1 Setup

Evaluation process. Following the problem setup, we consider k-class classification problems and
train a multilayered neural network fW = e ◦ h = e ◦ gL ◦ · · · ◦ g1 : Rn → Rk on some balanced
training data S. The model is trained using cross-entropy loss minimization between its logits and
the one-hot encodings of the labels. Here, g1, . . . , gL are the various hidden layers of the network
(e.g., fully-connected layers, residual blocks), where e is its top linear layer. After each epoch we
compute the rank of each one of the weight matrices in the network and the train and test accuracy
rates. The estimate the rank of a given matrix, we normalize it and count how many of its singular
values are /∈ [−1e−4, 1e−4]. In the experiments we used the MNIST and CIFAR10 datasets.

Architectures and hyperparameters. In this work we consider two types of architectures. The
first architecture is a Multi-layered perceptron (MLP). Our MLPs, denoted by MLP-BN-L-H consist
of L hidden layers, where each layer consists of a linear layer of width H , followed by batch
normalization and ReLU. On top of that we compose a linear output layer. The second architecture
is a fully-connected residual network (ResNet). Our ResNets, denoted by RES-BN-L-H consist of
a linear layer of width H , followed by L residual blocks, each computing a function of the form

2The plots are best viewed when zooming into the pictures.
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Figure 1: Convergence of MLP-5-2000 trained on MNIST and CIFAR10 with CE/ MSE loss. In
(a) we plot the averaged distance between the weight matrices at epoch t and epoch t+1, captured by,

1
|ET |

∑
(p,q)∈ET

∥W pq
t+1 −W pq

t ∥. In (b) we plot the train accuracy rates, in (c) we plot the averaged
train loss and in (d) we plot the average rank across the trainable matrices.
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Figure 2: Average rank of MLP-BN-10-100 trained on CIFAR10 with varying batch sizes. Each
line stands for the results of a different batch size. In the (top) row we plot the average rank across
layers during training and in the (bottom) row we plot the train and test accuracy rates for each
setting.

z + σ(n2(W2σ(n1(W1z)))), where W1,W2 ∈ RH×H , n1, n2 are batch normalization layers and
σ is the element-wise ReLU function. Again, the network is ended with a linear output layer. We
denote by MLP-L-H and RES-L-H the same architectures without applying batch normalization.

Unless mentioned otherwise, we trained the models using mini-batch SGD, with momentum 0.9. The
learning rate is decayed by a factor of 0.1 three times at epochs 60, 100, 200.
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Figure 3: Average rank of MLP-BN-10-100 trained on CIFAR10 with varying weight decay.
Each line stands for the results of a different value of λ. In the (top) row we plot the average rank
across layers during training and in the (bottom) row we plot the train and test accuracy rates for each
setting.
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Figure 4: Average rank of RES-BN-5-500 trained on CIFAR10 with varying batch sizes. Each
line stands for the results of a different value of batch size. In the (top) row we plot the average rank
across layers during training and in the (bottom) row we plot the train and test accuracy rates for each
setting.

4.2 Results on SGD Noise

In Sec. 3.1 we showed that when training a neural network with SGD, it cannot converge to a non-zero
function when applying weight decay. For this purpose, we trained MLP-5-2000 networks with
varying degrees of weight decay λ ∈ {0, 1e−6, 1e−5, 1e−4, 1e−3} and investigated the degree of
convergence they achieve. For simplicity, each model was trained using mini-batch SGD with batch
size 128 and learning rate 0.1 for 2000 epochs, but without scheduling or momentum. We trained the
models once with the CE loss and once with the squared loss.

In order to evaluate the degree of convergence of the networks, we use the following quantity:

d(Wt+1,Wt) :=
1

|ET |
∑

(p,q)∈ET

∥W pq
t+1 −W pq

t ∥,

where {W pq
t }(p,q)∈ET

are the various trainable matrices in the network at epoch t. This quantity
measures the averaged distance between the network’s matrices at epochs t and t+ 1. Convergence
is possible if and only if this quantity tends to zero.

In Fig. 1 we monitor (a) d(Wt+1,Wt), (b) the train accuracy rates, (c) the averaged train losses and
(d) the averaged rank of the trainable matrices. As predicted in Prop. 1, when training with λ > 0, Wt

either converges to zero and fWt
to the zero function (e.g., the averaged ranks for λ = 1e−4, 1e−3
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Figure 5: Average ranks and accuracy rates of MLP-5-500 trained on CIFAR10 with varying
batch sizes. Each line stands for the results of a different value of batch size. In the (top) row we
plot the average rank across layers during training and in the (bottom) row we plot the train and test
accuracy rates for each setting.

when training on CIFAR10 with the CE loss are zero) or Wt is does not converge (d(Wt+1,Wt) is
clearly lower bounded by a positive constant). On the other hand, the term d(Wt+1,Wt) (and its
slope) is smaller by orders of magnitude when using λ = 0 in comparison to using λ > 0 (except for
cases when the selection of λ > 0 leads to W pq

t → 0). Interestingly, even though in certain cases the
training loss and accuracy converged, the network’s parameters do not converge.

Finally, as we discussed in Sec. 3.1, by training for CE loss minimization without weight decay we
may encounter the ’almost convergence’ regime. In this regime, even though perfect convergence
is impossible (see Prop. 2) for a fixed neural network, the term limt→∞ d(Wt+1,Wt) may be as
small as we wish by increasing the size of the neural network. Therefore, since the MLP-5-2000 is
relatively large (compared to the dataset’s size) it seems that d(Wt+1,Wt) tends to zero.

train the network to a point where it has been practically converged and the averaged loss is tiny.

4.3 Results on Rank Minimization

Rank, batch size and the learning rate. We train instances of MLP-BN-10-100, RES-BN-5-
500 and MLP-5-500 with different batch sizes and initial learning rates. For each run we trained
the network for 500 epochs using mini-batch SGD with momentum 0.9, λ = 5e−4, batch size
B ∈ {2i+1}6i=1 and initial learning rate η ∈ {0.001, 0.01, 0.1}.
As can be seen in Figs. 2, 4 and 5, by increasing the batch size, we essentially strengthen the low-rank
constraint over the network’s matrices, which eventually leads to lower ranks. This is strongly aligned
with the prediction made in Sec. 3.2 that we should expect the rank of the various matrices to be
smaller when training the network with smaller batch sizes. In addition, we also notice that when
increasing the learning rate, the rank minimization constraint strengthens as well, which leads to
lower ranks and worse training performance. Therefore, as can be seen, to train a neural network
with smaller batch sizes, one needs to decrease the learning rate as well.

Rank and λ. To investigate the effect of the weight decay on rank minimization, we trained
instances of MLP-10-100 with different values of λ ∈ {0, 1e−4, 2e−4, 4e−4, 8e−4, 6e−3} and
batch sizes B ∈ {16, 32, 64, 128}. For each run we trained the network for 500 epochs using SGD
with momentum 0.9 and initial learning rate 0.1.

The results are reported in Fig. 3. As can be seen, by increasing λ we typically impose stronger rank
minimization constraints, as predicted in Sec. 3.2. In addition, we note that regardless of the batch
size, we do not have any rank minimization when λ = 0 as predicted in Sec. 3.2.
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5 Conclusions

In this work we theoretically studied the source of SGD noise and the implicit bias towards low-
rank weight matrices in deep neural networks. We made the several key theoretical and empirical
observations:

• We show that the batch size, weight decay and learning rate contribute to a regularizing effect on
the rank of the trainable matrices of neural networks;

• Weight decay and training with mini-batches are necessary to obtain rank minimization;

• SGD noise is inevitable when applying weight decay.

However, it has not escaped our attention that these results have a rich set of implications with respect
to other mysteries of deep learning. This includes questions as the reason why SGD training of net-
works generalizes well, the relationship between rank minimization and architectural choices (residual
networks [He et al., 2017], transformers [Vaswani et al., 2017] and convolutional networks [LeCun
et al., 1999]) and whether rank minimization extends beyond the standard learning settings.
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Figure 6: Ranks across layers of MLP-BN-10-100 trained on CIFAR10 with varying learning
rates and batch sizes. The x-axis specifies the layer’s index and the y-axis stands for the rank of the
given matrix. As can be seen, MLPs are inductively biased towards learning a bottleneck.
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Figure 7: Ranks across layers of RES-5-500 trained on CIFAR10 with varying learning rates
and batch sizes. The x-axis specifies the layer’s index and the y-axis stands for the rank of the given
matrix. As can be seen, ResNets are inductively biased to balance the rank of their residual blocks.

A Additional Experiments

Inductive biases. As an additional experiment we look at the rank of each matrix learned by MLP-
BN-10-100 and RES-BN-5-500. We train each model with a different batch size B ∈ {32, 64, 128}
and initial learning rate η ∈ {0.0125, 0.025, 0.05, 0.1}, while fixing λ = 5e−4 and the momentum
to be 0.9. In Fig. 6 we plot the ranks of each one of the matrices of the MLP-BN-10-100 trained
models and in Fig. 7 we plot the ranks for the RES-BN-5-500 models. Similar to Figs. 2 and 4, when
the batch sizes are too large or the learning rates are too small, the low-rank constraint is negligible.
However, when the rank constraint is active, we observe interesting inductive biases that emerge
when training the architectures. Specifically, for MLPs we obtain an encoder-decoder structure in
which the ranks of the bottom and top layers are larger then the ranks of the mid-layers. In contrast,
for ResNets we obtain a balanced structure in which the matrices within the residual blocks are of the
same rank.
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B Analyzing Standard Neural Networks

Lemma 1. Let fW be a neural network and W pq be a given matrix within fW . Then, for any input
x ∈ Rn, we have rank

(
∂fW (x)
∂Wpq

)
≤ 1.

Proof. We would like to show that the matrix ∂fW (x)
∂Wpq is of rank ≤ 1. We note that for any fixed x,

the network can be written as follows,

fW (x) =
∑

l1∈pred(l0)

W l0l1 · vl1(x), (11)

where l0 = L. In addition, each layer vl can also be written as

vl1(x) = Dl1(x)
∑

l2∈pred(l1)

W l1l2 · vl2(x), (12)

where Dl(x) = diag[σ′(vl(x)))]. Therefore, for any fixed input x, we can write f(x) as the sum of
matrix multiplications along paths π from v1 to vl0 . Specifically, we can write f(x) as a follows

fW (x) =
∑

π from p to l0

WπTπT−1 ·DπT−1
(x) · · ·Dπ2

(x) ·Wπ2π1 ·Dπ1
(x) ·W pq · vq(x)

+
∑

π from 1 to l0
(p,q)/∈π

WπTπT−1 ·DπT−1
(x) ·WπT−1πT−2 · · ·Dπ2(x) ·Wπ2π1x

=

 ∑
π from p to l0

WπTπT−1 ·DπT−1
(x) · · ·Wπ2π1 ·Dπ1(x)

 ·W pq · vq(x)

+
∑

π from 1 to l0
(p,q)/∈π

WπTπT−1 ·DπT−1
(x) ·WπT−1πT−2 · · ·Dπ2(x) ·Wπ2π1x

=: uq(x)
⊤ ·W pq · vq(x)

+
∑

π from 1 to l0
(p,q)/∈π

WπTπT−1 ·DπT−1
(x) ·WπT−1πT−2 · · ·Dπ2

(x) ·Wπ2π1x,

where T := T (π) denotes the length of the path π. We note that with measure 1 over W pq and x, the
matrices Dp(x) are constant in the neighborhood of W pq . In addition, vq(x) is independent of W pq .
Therefore, we conclude that

∂fW (x)

∂W pq
= uq(x) · vq(x)⊤. (13)

Since vq(x) and uq(x) are vectors, we conclude that rank
(

∂fW (x)
∂Wpq

)
≤ 1.

Proposition 1 (λ > 0). Let ℓ(a, b) be a differentiable loss function, λ > 0, and let fW (x) be a ReLU
neural network, where {(vp, v1) ∈ E | vp ∈ V } ⊂ ET . Let W be a convergence point of mini-batch
SGD for minimizing Lλ

S(fW ). Then, either fW ≡ 0 or {xi}mi=1 are collinear vectors.

Proof. By the same argument as in the proof of Lem. 1, we can write

fW (x) =
∑

π from 1 to L

WπTπT−1 ·DπT−1
(xi) ·WπT−1πT−2 · · ·Dπ2

(xi) ·Wπ2π1 · x

=
∑

(vp,v1)∈E

Ep(x) ·W p1 · x

=
∑

(vp,v1)∈ET

Ep(x) ·W p1 · x,

(14)
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where Ep(x) :=
∑

π from p to L WπTπT−1 · DπT−1
(xi) · · ·Wπ2π1 · Dπ1(xi). We denote Ep,i :=

Ep(xi) and we can write, ∂fW (xi)
∂Wp1 = Ep,i · x⊤

i .

We would like to show that {xi}mi=1 are collinear vectors or fW ≡ 0. Assume the opposite by
contradiction, i.e., that {xi}mi=1 are not collinear vectors and that fW ̸≡ 0. In particular, by Eq. 14,
we have, W p1 ̸= 0 for some p.

According to the analysis in Sec. 3.1, { ∂fW (xi)
∂vec(Wp1)}

m
i=1. Therefore, for any pair i, j ∈ [m], there is a

scalar αp
ij ∈ R, such that, Ep,i · x⊤

i = αp
ijEp,j · x⊤

j .

Consider a given index i ∈ [m]. We would like to show that either Ep,i = 0 or {xi}mi=1 are collinear
vectors. For any j ∈ [m], if αp

ij = 0, then, Ep,i · x⊤
i = 0, which implies that either Ep,i = 0 or

xi = 0 (which is false by assumption). Otherwise (αp
ij ̸= 0), either Ep,i = 0 or xi and xj are

collinear. We note that since this argument holds for all j ∈ [m], unless Ep,i = 0, we obtain that
{xi, xj} are collinear for all j ∈ [m]. Note that if {xi, xj} are collinear for all j ∈ [m], then, {xi}mi=1
are collinear vectors. Therefore, we state that either Ep,i = 0 or {xi}mi=1 are collinear vectors (which
we assumed to be false). We note that if Ep,i = 0 for all i ∈ [m], then, Mp1 = 0 (see Eq. 8), and by
Eq. 9, we have, W p1 = 0 in contradiction. Therefore, we conclude that either {xi}mi=1 are collinear
vectors or fW ≡ 0.

Proposition 2 (λ = 0). Let ℓ(a, b) be a differentiable loss function, λ = 0, and let fW (x) be a
ReLU neural network, where {(vp, v1) ∈ E | vp ∈ V } ⊂ ET . Let W be a convergence point of
mini-batch SGD for minimizing Lλ

S(fW ). Assume that {xi}mi=1 are not collinear. Then, for any
i ∈ [m], for which ∂ℓ(fW (xi),yi)

∂fW (xi)
̸= 0, we have, fW (xi) = 0. In particular, if ℓ is convex and

∀ b ∈ R ∄ a∗ ∈ R : ℓ(a∗, b) = infa ℓ(a, b), then, ∀ i ∈ [m] : fW (xi) = 0.

Proof. Let i ∈ [m] be an index for which ∂ℓ(fW (xi),yi)
∂fW (xi)

̸= 0. Then, we consider two possibilities: (i)

there exist j ∈ [m], for which ∂ℓ(fW (xj),yj)
∂fW (xj)

= 0 or (ii) for all j ∈ [m], we have ∂ℓ(fW (xj),yj)
∂fW (xj)

̸= 0.
Assume that the former holds. Then, by Eq. 8, we have,

∀ (vp, v1) ∈ E :
∂ℓ(fW (xi), yi)

∂fW (xi)
· ∂fW (xi)

∂W p1
= 0. (15)

This implies that Ep,i · x⊤
i = ∂fW (xi)

∂Wp1 = 0 for all (vp, v1) ∈ E (see the proof of Prop. 1). Since
xi ̸= 0, we conclude that Ep,i = 0 for all (vp, v1) ∈ E, which implies that fW (xi) = 0 by Eq. 14.

If the latter holds, then, for all i, j ∈ [m] and trainable W pq , we have

∂fW (xi)

∂W pq
=

[
∂ℓ(fW (xj), yj)

∂fW (xj)

]
/

[
∂ℓ(fW (xi), yi)

∂fW (xi)

]−1

· ∂fW (xj)

∂W pq
. (16)

In particular, { ∂fW (xi)
∂vec(Wp1)}

m
i=1 are collinear for all (vp, v1) ∈ E. Hence, by the proof of Cor. 1, either

∀ i ∈ [m] ∀ (vp, v1) ∈ E : Ep,i = 0 or {xi}mi=1 are collinear. Therefore, since {xi}mi=1 are not
collinear, we obtain that fW (xi) = 0 for all i ∈ [m] by Eq. 14.

Finally, if ℓ is convex and ∀ b ∈ R ∄ a∗ ∈ R : ℓ(a∗, b) = infa ℓ(a, b), we obtain that ∀ i ∈
[m] : ∂ℓ(fW (xi),yi)

∂fW (xi)
̸= 0. Hence, by the above, we conclude that, ∀ i ∈ [m] : fW (xi) = 0.

Theorem 1. Let ∥ · ∥ be any matrix norm. Let fW (x, X̃ ) be a ReLU neural network and W pq be a
given matrix within fW and let B∗ < m be a natural number. Then,

min
V ∈Rdp×dq :
rank(V )≤B∗

∥W pq − V ∥ ≤ 1

2λ
min

S̃⊂S: |S̃|=B∗
∥∇WpqLλ

S̃
(f̃W )∥ (10)

Proof. Let S̃ = {(xij , yij)}B
∗

j=1 ⊂ S be a batch of B∗ samples and X̃ = {xij}B
∗

j=1 be the corre-
sponding unlabeled batch. By the chain rule, we can write the gradient of the loss function as follows

∂̄LS̃(f̃W )

∂W pq
=

1

B∗

B∗∑
j=1

∂ℓ(fW (xij ; X̃ ), yij)
∂fW (xij ; X̃ )

· ∂̄fW (xij ; X̃ )
∂W pq

+ 2λW pq. (17)
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According to Lems. 1 and 2, the matrix US̃ := − 1
2λB∗

∑B∗

j=1
ℓ(fW (xij ;X̃ ),yij)

∂fW (xij ;X̃ )
· ∂fW (xij ;X̃ )

∂Wpq is of rank
≤ B∗. Therefore, we obtain the following

min
V : rank(V )≤B∗

∥W pq − V ∥ ≤ min
S̃⊂S: |S̃|=B∗

∥W pq − US̃∥

=
1

2λ
min

S̃⊂S: |S̃|=B∗
∥∇WpqLS̃(f̃W )∥,

(18)

which completes the proof of this theorem.

C Analyzing Neural Networks with Batch Normalization

Lemma 2. Let f̃W be a neural network and W pq be a given matrix within fW . Then, for any batch
X̃ = {xj}Bj=1 and real values β1, . . . , βB ∈ R, we have rank

(∑B
j=1 βj · ∂f̃W (xj ;X̃ )

∂Wpq

)
≤ B.

Proof. We would like to show that the matrices ∂̄fW (xi;X̃ )
∂Wpq and

∑B
i=1 βi · ∂̄fW (xi;X̃ )

∂Wpq are of rank ≤ B.
We note that for any fixed x, the network can be written as follows

f(x; X̃ ) =
∑

l1∈pred(L)

WLl1 · vl1(x; X̃ ). (19)

In addition, each layer vl1 can also be written as

vl1(x) = Dl1(x; X̃ ) ·

γl1 ·Al1(X̃ ) ·

 ∑
l2∈pred(l1)

W l1l2 · vl2(x; X̃ )− bl2(X̃ )

+ 1 · βl1


= Dl1(x; X̃ ) ·

γl1 ·Al1(X̃ ) ·

 ∑
l2∈pred(l1)

W l1l2 ·
[
vl2(x; X̃ )− µl2(X̃ )

]+ 1 · βl1


=

∑
l2∈pred(l1)

Ql1(x; X̃ ) ·W l1l2 ·
(
v2(x; X̃ )− µ2(X̃ )

)
+Dl1(x; X̃ ) · 1 · βl1

where Dl(x; X̃ ) := diag[σ′(nl(vl(x; X̃ )X̃ ))], bl(X̃ ) :=
∑

t∈pred(l) W
lt · µt(X̃ ) :=

∑
t∈pred(l) W

lt ·

Ex∼U [X̃ ]

[
vt(x; X̃ )

]
and Ql(x; X̃ ) := γl · Dl(x; X̃ ) · Al(x; X̃ ). For simplicity, we write l0 := L,

µl := µl(x; X̃ ), vjl := vl(xj ; X̃ ) and Qj
l := Ql(xj ; X̃ ). We define

∆j
l :=

{
xj if l = 1

vjl − µl if l ̸= 1
(20)

16



Hence, we can write f(xj0 ; X̃ ) as a follows

f(xj0 ; X̃ ) =
∑

l1∈pred(l0)

W l0l1 · vj0l1

=
∑

l1∈pred(l0)

W l0l1 · vj0l1

=
∑

l1∈pred(l0)

W l0l1 ·

Qj0
l1
·

 ∑
l2∈pred(l1)

W l1l2 · (vj0l2 − µl2)

+ 1 · βl1


=

∑
l1∈pred(l0)

W l0l1 · 1 · βl1

+
∑

l1∈pred(l0)

∑
l2∈pred(l1)

W l0l1 ·Qj0
l1
·W l1l2 · (vj0l2 − µl2)

=
∑

l1∈pred(l0)

W l0l1 · 1 · βl1

+
∑

l1∈pred(l0)

∑
l2∈pred(l1)

W l0l1 ·Qj0
l1
·W l1l2 ·∆j0

l2
.

(21)

For any lt+2 ̸= 1, we can write

∆jt
lt+2

= vjtlt+2
− µlt+2

= Djt
lt+2
· 1 · βlt+2

+Qjt
lt+2
·

 ∑
lt+3∈pred(lt+2)

W lt+2lt+3 · (vjtlt+3
− µlt+3

)


− 1

B

B∑
jt+1=1

Q
jt+1

lt+2
·

 ∑
lt+2∈pred(lt+1)

W lt+1lt+2 · (vjtlt+2
− µlt+2)


= Djt

lt+2
· 1 · βlt+2

+
∑

lt+3∈pred(lt+2)

B∑
jt+1=1

αjt,jt+1
Q

jt+1

lt+2
·W lt+2lt+3 ·∆jt+1

lt+3
,

(22)

where αi,j = −1/B for all pairs i ̸= j and αii =
B−1
B otherwise.

Hence, by recursion we can write the T ’th expansion of fW ,

fW (xj0 ; X̃ ) =
∑

l1∈pred(l0)

W l0l1 · 1 · βl1

+
∑

l1∈pred(l0)

∑
l2∈pred(l1)

W l0l1 ·Qj0
l1
·W l1l2 ·Dj0

l2
· 1 · βl2

+

T∑
t=2

∑
l1∈pred(l0)

∑
l2∈pred(l1)

∑
l3∈pred(l2)

· · ·
∑

lt+1∈pred(lt)

W l0l1 ·Qj0
l1

·W l1l2 ·
B∑

j1=1

αj0,j1Q
j1
l2
· · ·W ltlt+1 ·

B∑
jt=1

αjt−1,jtQ
jt
lt+1
·Djt−1

lt
· 1 · βlt

+
∑

l1∈pred(l0)

∑
l2∈pred(l1)

∑
l3∈pred(l2)

· · ·
∑

lt+1∈pred(lT )

W l0l1 ·Qj0
l1

·W l1l2 ·
B∑

j1=1

αj0,j1Q
j1
l2
· · ·W lT lT+1 ·

B∑
jT=1

αjT−1,jTQ
jT
lT+1
·W lT+1lT+2 ·∆jT

lT+2
.
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Instead of recursively expanding fW ’s expression T times by rewriting ∆jT
lT+1

using Eq. 22, we

can expand through ∆jT
lT+2

based on different kinds of criteria. Specifically, we can keep ∆jT
lT+2

unchanged or expanded based on a whether (lT , lT+1) = (p, q) or not. Therefore, we can write
fW (xj0 ; X̃ ) as the sum of matrix multiplications along paths π that start with (q, p) and end by L
and paths that start with 1 and end with L that do not pass through (q, p). Formally, let j0 ∈ [B] and
π a path from some node to πT = L of length T ,

Ej0
1,π =



Wπ2π1 · 1 · βπ1
if T = 2

Wπ3π2 ·Qj0
π2
·Wπ2π1 ·Dj0

π1
· 1 · βπ1

if T = 3

WπTπT−1 ·Qj0
πT−1

·WπT−1πT−2 ·
B∑

j1=1

αj0,j1Q
j1
πT−2

· · ·Wπ2π1 ·
B∑

jT−2=1

αjT−3,jT−2
QjT−2

π1
·DjT−2

π1
· 1 · βπ1

if T > 3

and also

Ej0
2,π =



WπTπT−1 ·Qj0
πT−1

·WπT−1πT−2 ·
B∑

j1=1

αj0,j1Q
j1
πT−2

· · ·Wπ2π1 ·
B∑

jT−2=1

αjT−3,jT−2
QjT−2

π1
·
∑

l∈pred(π1)

Wπ1l ·∆jT−2

l

if π1 ̸= 1

WπTπT−1 ·QπT−1
·WπT−1πT−2 ·

B∑
j1=1

αj0,j1Q
j1
πT−2

· · ·Wπ3π2 ·
B∑

jt=1

αjt−1,jtQ
jt
π2
·Wπ2π1 · x

if π1 = 1

With this terminology we can write

fW (xj0 ; X̃ ) =
∑

π from some node to L
(p, q) /∈ π

Ej0
1,π +

∑
π from p to L
π1=p,π2=q

Ej0
1,π +

∑
π from 1 to L
(p, q) /∈ π

Ej0
2,π +

∑
π from p to L
π1=p,π2=q

Ej0
2,π

=: Zj0
1 + Zj0

2 + Zj0
3 + Zj0

4 .

We note that with measure 1 over W , x and X̃ , the matrices Dl(x; X̃ ) are constant in the neighborhood
of W pq . Since Al(x; X̃ ) is detached, the pseudo-gradients of the matrices Qj

l with respect to W pq are

zero. Therefore, since the terms Zj0
1 and Zj0

3 do not involve W pq , we have ∂̄fW (xj0
;X̃ )

∂Wpq =
∂̄(Z

j0
2 +Z

j0
4 )

∂Wpq .
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As a next step, we would like to represent the pseudo gradients ∂̄Z2

∂Wpq and ∂̄Z4

∂Wpq individually. We
start with ∂̄Z2

∂Wpq . We can write

Zj0
2 =

∑
π from p to L
π1=p,π2=q

WπTπT−1 ·Qj0
πT−1

·WπT−1πT−2 ·
B∑

j1=1

αj0,j1Q
j1
πT−2

· · ·Wπ2π1 ·
B∑

jT−2=1

αjT−3,jT−2
QjT−2

π1
·DjT−2

π1
· 1 · βπ1

=
∑

π from p to L
π1=p,π2=q

B∑
jT−3=1

(uπ,1
j0,jT−3

)⊤ ·W pq ·
B∑

jT−2=1

αjT−3,jT−2
QjT−2

q ·DjT−2
q · 1 · βq

=

B∑
jT−3=1

 ∑
π from p to L
π1=p,π2=q

(uπ,1
j0,jT−3

)⊤

 ·W pq ·
B∑

jT−2=1

αjT−3,jT−2
QjT−2

q ·DjT−2
q · 1 · βq

=
B∑

jT−3=1

(u1
j0,jT−3

)⊤ ·W pq · u2
jT−3

,

where

(uπ,1
j0,jT−3

)⊤ : = WπTπT−1 ·Qj0
πT−1

·WπT−1πT−2 ·
B∑

j1=1

αj0,j1Q
j1
πT−2

· · ·Wπ4π3 ·
B∑

jT−4=1

αjT−5,jT−4
QjT−4

π3
·Wπ3π2αjT−4jT−3

QjT−3
π2

(u1
j0,jT−3

)⊤ : =
∑

π from p to L
π1=p,π2=q

uπ,1
jT−3

u2
jT−3

: =

B∑
jT−2=1

αjT−3,jT−2
QjT−2

q ·DjT−2
q · 1 · βq.

Therefore, we can write Zj0
2 =

∑B
jT−3=1(u

1
j0,jT−3

)⊤ ·W pq · u2
jT−3

and we obtain that ∂̄Z
j0
2

∂Wpq =∑B
jT−3=1(u

1
j0,jT−3

) · (u2
jT−3

)⊤.

Next, we would like to analyze the pseudo gradient ∂̄Z
j0
4

∂Wpq . We can write

Zj0
4 =

∑
π from p to L
π1=p,π2=q

WπTπT−1 ·Qj0
πT−1

·WπT−1πT−2 ·
B∑

j1=1

αj0,j1Q
j1
πT−2

· · ·Wπ2π1 ·
B∑

jT−2=1

αjT−3,jT−2
QjT−2

π1
·
∑

l∈pred(π1)

Wπ1l ·∆jT−2

l

=
∑

π from p to L
π1=p,π2=q

WπTπT−1 ·Qj0
πT−1

·WπT−1πT−2 ·
B∑

j1=1

αj0,j1Q
j1
πT−2

· · ·W pq ·
B∑

jT−2=1

αjT−3,jT−2
QjT−2

q ·
∑

l∈pred(q)

W ql ·∆jT−2

l

=

B∑
jT−3=1

(u1
j0,jT−3

)⊤ ·W pq · u3
jT−3

,
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where

u3
jT−3

:=

B∑
jT−2=1

αjT−3,jT−2
QjT−2

q ·
∑

l∈pred(q)

W ql ·∆jT−2

l .

Therefore, we conclude that ∂̄Z
j0
4

∂Wpq =
∑B

jT−3=1(u
1
j0,jT−3

) · (u3
jT−3

)⊤. Hence, we conclude that

∂̄f(xj0 ; X̃ )
∂W pq

=
∂̄Zj0

2

∂W pq
+

∂̄Zj0
4

∂W pq

=

B∑
jT−3=1

(u1
j0,jT−3

) · (u2
jT−3

)⊤ +

B∑
jT−3=1

(u1
j0,jT−3

) · (u3
jT−3

)⊤

=

B∑
jT−3=1

(u1
j0,jT−3

) · (u2
jT−3

+ u3
jT−3

)⊤,

(23)

which is a matrix of rank ≤ B. Finally, we notice that
B∑

j0=1

βj0 ·
∂̄fW (xj0 ; X̃ )

∂W pq
=

B∑
j0=1

βj0

(
∂̄Zj0

2

∂W pq
+

∂̄Zj0
4

∂W pq

)

=

B∑
j0=1

βj0 ·
B∑

jT−3=1

(u1
j0,jT−3

) · (u2
jT−3

+ u3
jT−3

)⊤

=

B∑
jT−3=1

 B∑
j0=1

βj0u
1
j0,jT−3

 · (u2
jT−3

+ u3
jT−3

)⊤,

(24)

which is also a matrix of rank ≤ B.

D Generalization

Our estimate of the number of units and parameters needed for a deep network to approximate
compositional functions with an error ϵG allow the use of one of several available bounds for the
generalization error of the network to derive sample complexity bounds. It is important to notice
however that these bounds do not apply to the networks used today, since they assume a number of
parameters smaller than the size of the training set. We report them for the interest of the curious
reader. Consider theorem 16.2 in Anthony and Bartlett [2002] which provides the following sample
bound for a generalization error ϵG with probability at least 1 − δ in a network in which the W
parameters (weights and biases) which are supposed to minimize the empirical error (the theorem is
stated in the standard ERM setup) are expressed in terms of k bits:

M(ϵG, δ) ≤
2

ϵ2G
(kW log 2 + log(

2

δ
)) (25)

E Rank one Constraint for Exponential-Type Loss Functions

Assume that a deep multilayered neural network f(x) = WLσ(WL−1 . . . σ(W 1x)) is trained on
a binary classification task with weight normalization with respect to an exponential loss function
without weight decay. The stationary points of the SGD flow of the normalized weight matrices
Vk are given (see Poggio and Liao [2019], Poggio et al. [2020]) for any finite ρ =

∏L
k=1 ρk, where

ρk = ∥Wk∥2 by

B∑
n

e−ρynf̂nyn

(
∂f̂n
∂Vk

− Vkf̂n

)
= 0, (26)

where f̂n is the scalar output of the ReLU network with normalized weight matrices when the input
is xn, yn is the corresponding binary label and B is the size of the minibatches. For any large but
finite value of ρ, the equation shows a similar rank one constraint on the Vk weight matrices.
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