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Abstract. Convolutional neural networks have been shown to develop
internal representations, which correspond closely to semantically mean-
ingful objects and parts, although trained solely on class labels. Class
Activation Mapping (CAM) is a recent method that makes it possible to
easily highlight the image regions contributing to a network’s classifica-
tion decision. We build upon these two developments to enable a network
to re-examine informative image regions, which we term introspection.
We propose a weakly-supervised iterative scheme, which shifts its cen-
ter of attention to increasingly discriminative regions as it progresses,
by alternating stages of classification and introspection. We evaluate our
method and show its effectiveness over a range of several datasets, where
we obtain competitive or state-of-the-art results: on Stanford-40 Actions,
we set a new state-of the art of 81.74%. On FGVC-Aircraft and the Stan-
ford Dogs dataset, we show consistent improvements over baselines, some
of which include significantly more supervision.

1 Introduction

With the advent of deep convolutional neural networks as the leading method
in computer vision, several attempts have been made to understand their inner
workings. Examples of pioneering work in this direction include [1,2]; providing
glimpses into the representations learned by intermediate levels in the network.
Specifically, the recent work of Zhou et al. [3] provides an elegant mechanism to
highlight the discriminative image regions that served the CNN for a given task.
This can be seen as a form of introspection, highlighting the source of the net-
work’s conclusions. A useful trait we have observed in experiments is that even
if the final classification is incorrect, the highlighted image regions are still be
informative with respect to the correct target class. This is probably due to the
similar appearance of confused classes. see Figures 1 and 4 for some examples.
Motivated by this observation, we propose an iterative mechanism of internal
supervision, termed introspection, which revisits discriminative regions to refine
the classification. As the process is repeated, each stage further highlights dis-
criminative sub-regions. Each stage uses its own classifier, as we found this to
be beneficial when compared to using the same classifier for all sub-windows.

ar
X

iv
:1

60
3.

04
18

6v
2 

 [
cs

.C
V

] 
 2

5 
M

ay
 2

01
6



2 Amir Rosenfeld Shimon Ullman

(a) brushing teeth (b) looking through a
telescope

(c) fishing

(d) phoning (e) taking photo (f) walking a dog

Fig. 1: (Top) Class Activation Maps [3] show the source of a network’s classi-
fication. The network tends to focus on relevant image regions even if its final
prediction is wrong. An SVM trained on features extracted from VGG-GAP [3]
misclassified all of these images, while highlighting the discriminative regions.
(a,b,c) the predicted classes appears in red. (Bottom, zoomed in version of top)
The proposed method effectively removes many such errors by focusing atten-
tion on the highlighted regions. (d,e,f ) the corrected prediction following the
introspection stage appears in green.

We describe strategies for how to leverage the introspection scheme, and
demonstrate how these consistently improve results on several benchmark datasets,
while progressively refining the localization of discriminative regions. As shown,
our method is particularly beneficial for fine-grained tasks such as species [4,5]
or model [6] identification and to challenging cases in e.g., action recognition [7],
which requires attention to small and localized details.

In the following we will first review some related work. In Section 3 we
describe our method in detail. Section 4 contains experiments and analysis to
evaluate the proposed method, followed by concluding remarks in 5.

2 Related Work

Supervised methods consistently outperform unsupervised or semi-supervised
methods, as they allow for the incorporation of prior knowledge into the learn-
ing process. There is a trade-off between more accurate classification results
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and structured output on the one and, the cost of labor-intensive manual an-
notations, on the other. Some examples are [8,9], where bounding boxes and
part annotations are given at train time. Aside from the resources required for
large-scale annotations, such methods elude the question of learning from weakly
supervised data (and mostly unsupervised data), as is known to happen in hu-
man infants, who can learn from limited examples [10]. Following are a few lines
of work related to the proposed method.

2.1 Neural Net Visualization and Inversion

Several methods have been proposed to visualize the output of a neural net
or explore its internal activations. Zeiler et al. [1] found patterns that activate
hidden units via deconvolutional neural networks. They also explore the local-
ization ability of a CNN by observing the change in classification as different
image regions are masked out. [2] Solves an optimization problem, aiming to
generate an image whose features are similar to a target image, regularized by a
natural image prior. Zhou et al. [11] aims to explicitly find what image patches
activate hidden network units, finding that indeed many of them correspond to
semantic concepts and object parts. These visualizations suggest that, despite
training solely with image labels, there is much to exploit within the internal
representations learned by the network and that the emergent representations
can be used for weakly supervised localization and other tasks of fine-grained
nature.

2.2 Semi-Supervised class Localization

Some recent works attempt to obtain object localization through weak labels,
i.e., the net is trained on image-level class labels, but it also learns localization.
[12] Localizes image regions pertaining to the target class by masking out sub-
images and inspecting change in activations of the network. Oquab et al. [13] use
global max-pooling to obtain points on the target objects. Recently, Zhou et al.
[3] used global average pooling (GAP) to generate a Class-Activation Mapping
(CAM), visualizing discriminative image regions and enabling the localization
of detected concepts. Our introspection mechanism utilizes their CAMs to it-
eratively identify discriminative regions and uses them to improve classification
without additional supervision.

2.3 Attention Based Mechanisms

Recently, some attention based mechanisms have been proposed, which allow
focusing on relevant image regions, either for the task of better classification
[14] or efficient object localization [15]. Such methods benefit from the recent fu-
sion between the fields of deep learning and reinforcement learning [16]. Another
method of interest is the spatial-transformer networks in [17]: they designed a
network that learns and applies spatial warping to the feature maps, effectively
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aligning inputs, which results in increased robustness to geometric transforma-
tions. This enables fine-grained categorization on the CUB-200-2011 birds [4]
dataset by transforming the image so that only discriminative parts are consid-
ered (bird’s head, body). Additional works appear in [18], who discovers discrim-
inative patches and groups them to generate part detectors, whose detections
are combined with the discovered patches for a final classification. In [19], the
outputs of two networks are combined via an outer-product, creating a strong
feature representation. [20] discovers and uses parts by using co-segmentation
on ground-truth bounding boxes followed by alignment.

Fig. 2: Overview of proposed method. At each iteration, an image window (top)
is classified using features from a GAP-network. Top scoring classes are used
to generate Class Activation Maps (bottom), which are then used to select sub-
windows (green rectangles). The process is repeated for a few iterations and
features from all visited image windows are aggregated and used in a final clas-
sifier. The correct class is “writing on a book”. Attention shifts gradually and
closes in on the discriminative image region, i.e., the boy’s hand holding a pencil.

3 Approach

Our approach is composed of alternating between two main steps: classification
and introspection. In the classification step, we apply a trained network to an
image region (possibly the entire image). In the introspection step, we use the
output of a hidden layer in the network, whose values were set during the classi-
fication step. This highlights image regions which are fed to the next iteration’s



Visual Concept Recognition and Localization via Iterative Introspection 5

classification step. This process is iterated a few times (typically 4, see Section 4,
Fig. 5), and finally the results of all stages are combined. Training proceeds by
learning a specialized classifier for each iteration, as different iterations capture
different contexts and levels of detail (but without additional supervision).

Both classification/introspection steps utilize the recent Class-Activation Map-
ping method of [3]. We briefly review the CAM method and then describe how we
build upon it. In [3], a deep neural network is modified so that post-classification,
it is possible to visualize the varying contribution of image regions, via a so-called
Class Activation Mapping (CAM). A global average pooling was used as a penul-
timate feature representation. This results in a feature vector which is a spatial
averaging of each of the feature maps of the last convolutional layer. Using the
notation in [3]: let fk(x, y) be the k’th output of the last convolutional layer at
grid location (x, y). The results of the global-average pooling results in a vector
F = (F1, F2, . . . , Fk), defined as:

Fk =
∑
x,y

fk(x, y) (1)

This is followed by a fully connected layer with C outputs (assuming C target
classes). Hence the score for class c before the soft-max will be:

Sc =
∑
k

wc
kFk (2)

=
∑
k

wc
k

∑
x,y

fk(x, y) (3)

=
∑
x,y

∑
k

wc
kfk(x, y) (4)

Now, define

Mc(x, y) =
∑
k

ωc
kfk(x, y) (5)

where ωc
k are class-specific weights. Hence we can express Sc as a summation

of terms over (x, y):

Sc =
∑
x,y

Mc(x, y) (6)

And the class probability scores are computed via soft-max, e.g, Pc = eSc∑
t e

St
.

Eq. 5 allows us to measure the contribution of each grid cell Mc(x, y) for each
specific class c. Indeed, [3] has shown this method to highlight informative image
regions (with respect to the task at hand), while being on par with the classifica-
tion performance obtained by the unmodified network (GoogLeNet [21] in their
case). See Fig. 1 for some CAMs. Interestingly, we can use the CAM method
to highlight informative image regions for classes other than the correct class,
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providing intuition on the features it has learned to recognize. This is discussed
in more detail in Section 4.2 and demonstrated in Fig. 4. We name a network
whose final convolutional layer is followed by a GAP layer as a GAP-network,
and the output of the GAP layer as the GAP features. We next describe how
this is used in our proposed method.

3.1 Iterative Classification-Introspection

The proposed method alternates classification and introspection. Here we provide
the outline of the method, with specific details such as values of parameters
discussed in Section 4.6.

For a given image I and window w (initially the entire image), a learned
classifier is applied to the GAP features extracted from the window Iw, resulting
in C classification scores Sc, c ∈ [1 . . . C] and corresponding CAMs Mw

c (x, y).
The introspection phase employs a strategy to select a sub-window for the next
step by applying a beam-search to a set of putative sub-windows. The sequence
of windows visited by the method is a route on an exploration-tree, from the root
to one of the leaves. Each node represents an image window and the root is the
entire image. We next explain how the sub-windows are created, and how the
search is applied.

We order the current classification scores Sc by descending order and retain
the top k scoring classes. Let ĉ be one of these classes and Mw

ĉ (x, y) the corre-
sponding CAM. We extract a square sub-window w′ centered on the maximal
value of Mw

ĉ (x, y). Each such w′ (k in total) is added as a child of the current
node, which is represented by w. In this way, each iteration of the method ex-
pands a selected node in the exploration-tree, corresponding to an image window,
until a maximum depth is reached. The tree depth is the number of iterations.
We define iteration 0 as the iteration acting on the root. The size of a sub-window
w′ is of a constant fraction of the size of its parent w. We next describe how the
exploration-tree is used for classification.

3.2 Feature Aggregation

Let k be the number of windows generated at iteration t > 0. We denote the set
of windows by:

Wt = (wt
i)

k
i=1 (7)

And the entire set of windows as:

R = (Wt)
T
t=0 (8)

where W0 is the entire image. For each window wt
i we extract features f t

w ∈
RK , e.g., K = 1024, the dimension of the GAP features, as well as classification
scores Swt

i
∈ RC . The set of windows R for an image I is arranged as nodes in

the exploration-tree. The final prediction is a result of aggregating evidence from
selected sub-windows along some path from the root to a tree-leaf. We evaluate
variants of both early fusion (combining features from different iterations) or
later fusion (combining predictions from different iterations).
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3.3 Training

Training proceeds in two main stages. The first is to train a sequence of classifiers
that will produce an exploration-tree for each training/testing sample. The sec-
ond is training on feature aggregations along different routes in the exploration-
trees, to produce a final model.

During training, we train a classifier for each iteration (for a predefined num-
ber of iterations, 5 total) of the introspection/classification sequence. The au-
tomatic training of multiple classifiers at different scales contributes directly to
the success of the method, as using the same classifier for all iterations yielded
no improvement over the baseline results (Section 4.1). For the first iteration, we
simply train on entire images with the ground-truth class-labels. For each itera-
tion t > 1, we set the training samples to sub-windows of the original images and
the targets to the ground-truth labels. The sub-windows selected for training are
always those corresponding to the strongest local maximum in Mc(x, y), where
Mĉ(x, y) is the CAM corresponding to the highest scoring class. Each classifier
is an SVM trained on the features the output of the GAP layer of the network
(as was done in [3]). We also checked the effect of fine-tuning the network and
using additional features. The Results are discussed in the experiments, Section
4.

Routes on Exploration Trees The image is explored by traversing routes
on a tree of nested sub-windows. The result of training is a set of classifiers,
E = (E)i=1...T . We produce an exploration tree by applying at each iteration
j the classifier Ej on the features of the windows produced by the previous it-
eration. The window of iteration 0 is the entire image. A route along the tree
will consist of a sequence of windows w1, w2, ...wT where T is the number of
iterations. We found in experiments that more than 5 iterations (including the
first) brings negligible boosts in performance. The image score for a given class
is given by either (1) summing the scores of classifiers along a route (late fu-
sion), or (2) learning a classifier for the combined features of all visited windows
along the route (early fusion). Features are combined via averaging rather than
concatenation. This reduces the training time at no significant change to the
final performance; such an effect has also been noted by [22]. See Fig. 2 for an
overview of the proposed method. Fig. 3 shows some examples of how progres-
sively zooming in on image regions helps correct early classification mistakes.

4 Experiments

4.1 Setup:

In all our experiments, we start with a variant of the VGG-16 network [22]
which was fined tuned on ILSVRC by [3]. We chose it over GoogLeNet-GAP
as it obtained slightly higher classification results on the ILSVRC validation
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Fig. 3: Exploration routes on images: Each row shows the original image and
3 iterations of the algorithm, including the resulting Class-Activation Maps [3]
used to guide the next iteration. The selected sub-window is shown with a green
bounding box. Despite being trained and tested without any bounding box an-
notations, the proposed method closes in on the features relevant to the target
class. The first 2 predictions (columns 2,3 ) in each row are mistaken and the
last one (rightmost column) is correct.

set. In this network, all layers after conv5-3 have been removed, including the
subsequent pooling layer; hence the spatial-resolution of the resultant feature
maps/CAM is 14 × 14 for an input of size 224 × 224 (leaving the pooling layer
would reduce resolution to be 7 × 7). A convolutional layer of 1024 filters has
been added, followed by a fully-connected layer to predict classes. This is our
basic GAP-network, called VGG-GAP. Each image window, including the entire
original image, is resized so that its smaller dimension is 224 pixels, resulting
in a feature map 14 × n × 1024, for which we compute the average along the
first two dimensions, to get a feature representation. We resize the images using
bilinear interpolation. We train a separate classifier for each iteration of the
classification/introspection process; treating all visited image windows with the
same classifier yielded a negligible improvement (0.3% in precision) over the
baseline. All classifiers are trained with a linear SVM [26] on `2 normalized
feature vectors. If the features are a concatenation of two feature vectors, those
are `2 normalized before concatenation. Our experiments were carried out using
the MatConvNet framework [27], as well as [28,?]. We evaluated our approach on
several datasets, including Stanford-40 Actions [7], the Caltech-USCD Birds-200-
2011 [4] (a.k.a CUB-200-2011), the Stanford-Dogs dataset, [5] and the FGVC-
Aircraft dataset [6]. See Table 1 for a summary of our results compared to recent
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Table 1: Classification accuracy of our method vs. a baseline for several datasets.
VGG-GAP* is our improved baseline using the VGG-GAP network [3]. ours-
late-fusion: we aggregate the scores of image windows along the visited path.
ours-early-fusion: aggregate scores of classifiers trained on feature combination
of windows along the visited path. ours-ft: same as ours-early fusion but fine-
tuned. +D: concatenated with fc6 features from VGG-16 at each stage. *Stanford
Dogs is a subset of ILSVRC dataset. For this dataset, we compare to work which
also used a network pre-trained on ILSVRC. †means fine tuning the network on
all iterations.

Method 40-
Actions

Dogs* Birds Aircraft

GoogLeNet-GAP[3] 72.03 - 63.00 -

VGG-16-fc6 73.83 83.76 63.46 60.07

VGG-GAP* 75.31 81.83 65.72 62.95

ours-late-fusion 76.88 82.63 73.52 66.34

ours-early-fusion 77.08 83.55 71.64 68.26

ours-ft 80.37 82.62 78.74 79.15

ours-early-fusion+D 81.04 86.25 78.91 77.74

ours-ft+D 81.74 84.18 79.55 78.04

Previous Work 72.03[3],81
[23]

79.92[24] 77.9[18], 81.01
[25], 82 [20],
84.1 [17]

84.1[19]

work. In the following, we shall first show some analysis on the validity of using
the CAMs to guide the next step. We shall then describe interesting properties
of our method, as well as the effects of different parameterizations of the method.

4.2 Correlation of Class and Localization

In this section, we show some examples to verify our observation that CAMs
tend to highlight informative image locations w.r.t to the target class despite
the fact that the image may have been misclassified at the first iteration (i.e.,
before zooming in on sub-windows).

To do so, we have applied to the test-set of the Stanford-40 actions dataset
a classifier learned on the GAP features of VGG-GAP. For each category in
turn, we ranked all images in the test set according to the classifier’s score for
that category. We then picked the top 5 true positive images and top 5 false
positive images. See Fig. 4 for some representative images. We can see that the
CAMs for a target class tend to be consistent in both positive images and high-
ranking non-class images. Intuitively, this is because the classifier gives more
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weight to patterns which are similar in appearance. For the “writing on a book”
category (top-left of Fig. 4 ) we can see how in positive images the books and
especially the hands are highlighted, as they are for non-class images, such as
“reading”, or “cutting vegetables”. For “texting message” (top-right) the hand
region is highlighted in all images, regardless of class. For “shooting an arrow”
class (bottom-right), elongated structures such as fishing rods are highlighted. A
nice confusion appears between an archer’s bow and a violinist’s bow (bottom-
right block, last row, first image), which are also referred to by the same word
in some human languages.

(writing on a book) (taking photos)

(texting message) (shooting an arrow)

Fig. 4: Top ranking images (both true positives and false positives) for various ac-
tion categories along with Class-Activation Maps. Misclassified images still carry
information on where additional attention will disambiguate the classification.
Each block of images shows, from first to fourth row: high-ranking true-positives
and their respective CAMs , high ranking false-positive and their respective
CAMs. The target class appears below each block. We recommend viewing this
figure online to zoom in on the details.
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To check our claim quantitatively, we computed the extent of two square
sub-windows for each image in the test-set: one using the CAM of the true class
and one using the CAM of the highest scoring non-true class. For each pair
we computed the overlap (intersection over union) score. The mean score of all
images was 0.638; This is complementary evidence to [3], who shows that the
CAMs have good localization capabilities for the correct class.

4.3 Early and Late Fusion

In all our experiments, we found that using the features extracted from a window
at some iteration can bring worse results on its own compared to those extracted
from earlier iterations (which include this window). However, the performance
tends to improve as we combine results from several iterations, in a late-fusion
manner. Training on the combined (averaged) features of windows from multiple
iterations further improves the results (early-fusion). Summing the scores of
early-fused features for different route lengths further improves accuracy: if Si

is the score of the classifier trained on a route of length i. Then creating a final
score from S1 +St + . . . ST tends to improve as T grows, typically stabilizing at
T = 5. See Fig. 5 for an illustration of this effect. Importantly, we tried using the
classifier from the first iteration (i.e., trained on entire images) for all iterations.
This performed worse than learning a classifier per-iteration, especially in later
iterations.

4.4 Fine-Grained vs General Categories

The Standford-40 Action dataset [7] is a benchmark dataset made of 9532 images
of 40 different action classes, with 4000 images for training and the rest for test-
ing. It contains a diverse set of action classes including transitive ones with small
objects (smoking, drinking) and large objects (horses), as well as intransitive ac-
tions (running, jumping). As a baseline, we used the GAP-network of [3] as a
feature extractor and trained a multi-class SVM [26] using the resulting features.
It is particularly interesting to examine the classes for which our method is most
beneficial. We have calculated the F-measure for each class using the classifica-
tion scores from the fourth and first iteration and compared them. Fig. 6 shows
this; the largest absolute improvements are on relatively challenging classes such
as texting a message (7.64%), drinking (4.32%), smoking (4.3%), etc. For all
of these, the discriminative objects are small objects and are relatively hard to
detect compared to most other classes. In some cases, performance is harmed by
zooming in on too-local parts of an image: for “riding a bike” (-0.8%), a small
part of the bicycle will not allow disambiguating the image from e.g., “fixing a
bike”. Another pair of categories exhibiting similar behavior is “riding a horse”
vs. “feeding a horse”.

4.5 Top-Down vs. Bottom-Up attention

To further verify that our introspection mechanism highlights regions whose
exploration is worthwhile, we evaluated an alternative to the introspection stage
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iteration no.
1 1.5 2 2.5 3 3.5 4

cl
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cy

72

73

74

75

76

77

78
Early vs. Late Fusion

same-classifier
late-fusion
early-fusion
early-fusion-accum

Fig. 5: Effect of learning at different iterations: using the same classifier trained
on entire images for all iterations tends to cause overall precision to drop (same-
classifier). Accumulating the scores of per-iteration learned classifiers along the
explored path improves this (late-fusion). Using all features along the observed
exploration path improves classification as the path length increases (early-
fusion) and summing all scores along the early-fusion path brings the best
performance (early-fusion-accum). Performance is shown on the Stanford-40 [7]
dataset

by using a generic saliency measure [29]. On the Stanford-40 dataset, instead of
using the CAM after the first classification step, we picked the most salient image
point as the center of the next sub-window. Then we proceeded with training
and testing as usual. This produced a sharp drop in results: on the first iteration
performance dropped from 74.47% when using the CAM to 62.31% when using
the saliency map. Corresponding drops in performance were measured in the
late-fusion and early fusion steps, which improve results in the proposed scheme
but made them worse when using saliency as a guide.

Usage of Complementary Feature Representations The network used for
drawing attention to discriminative image regions need not necessarily be the one
used for feature representation. We used the VGG-16 [22] network to extract fc6
features along the GAP features for all considered windows. On the Stanford-40
Actions dataset, when used to classify categories using features extracted from
entire images, these features we slightly weaker than the GAP features (73%
vs 75%). However, training on a concatenated feature representation boosted
results significantly, reaching a precision of 80%. We observed a similar effect on
all datasets, showing that the two representations are complementary in nature.
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change in F measure
-4 -3 -2 -1 0 1 2 3 4 5 6 7 8

cl
as

s

cleaning the floor
fixing a car

running
fixing a bike

fishing
feeding a horse

looking through a telescope
pushing a cart

climbing
waving hands

looking through a microscope
shooting an arrow

riding a bike
cooking

riding a horse
throwing frisby

walking the dog
holding an umbrella

rowing a boat
cutting vegetables

playing guitar
jumping

brushing teeth
taking photos

blowing bubbles
washing dishes

pouring liquid
watching TV

using a computer
playing violin

gardening
writing on a board
writing on a book

applauding
smoking
drinking

cutting trees
texting message

reading
phoning

Fig. 6: Our approach improves mainly fine-grained tasks and categories where
classification depends on small and specific image windows. The figure shows
absolute difference in terms of F-measure over the baseline approach on all cat-
egories of the Stanford-40 Actions [7] dataset. It is recommended to view this
figure online.

Combined with our iterative method, we were able to achieve 81.74%, compared
to the previous best 81% of [23].

Effect of Aspect-Ratio Distortion Interestingly, our baseline implementa-
tion (using only the VGG-GAP network as a feature extractor for the entire
image) got a precision score of 75.23% compared to 72.03% of [3]. We suspect
that it may be because in their implementation , they modified the aspect ratio
of the images to be square regardless of the original aspect ratio, whereas we
did not. Doing so indeed got a score more similar to theirs, which is interesting
from a practical viewpoint.

4.6 Various Parameters & Fine-Tuning

Our method includes several parameters, including the number of iterations, the
width of the beam-search used to explore routes of windows on the image and
the ratio between the size of the current window and the next. For the number
iterations, we have consistently observed that performance saturates, and even
deteriorates a bit, around iteration 4. An example of this can be seen in Fig.
5 showing the performance vs iteration number on the Standford-40 dataset. A
similar behavior was observed on all the datasets on which we’ve evaluated the
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method. This is probably due to the increasingly small image regions considered
at each iteration. As for the number of windows to consider at each stage, we
tried choosing between 1 and 3 of the windows relating to the highest ranking
classes on a validation set. At best, such strategies performed as well as the
greedy strategy, which chose only the highest scoring window at each iteration.
The size of the sub-window with respect to the current image window was set
as
√

2m where m is the geometric mean of the current window’s height and
width (in effect, all windows are square, except the entire image). We have
experimented with smaller and larger values on a validation set and found this
parameter to give a good trade-off between not zooming in too much (risking
“missing” relevant features) and too little (gaining too little information with
respect to the previous iteration).

We have also evaluated our results when fine-tuning the VGG-GAP network
before the first iteration. This improves the results for some of the datasets, i.e.,
Stanford-40 [7], CUB-200-2011 [4], but did not improve results significantly for
others (Dogs [5], Aircraft [6]).

Finally, we evaluated the effect of fine-tuning the network for all iterations
on the CUB-200-2011. This resulted in a competitive results of 79.95%. Some of
the best results to date added a massive amount of external data mined from
the web [30] (91.9%) and/or strong supervision [31] (84.6%).

5 Conclusions

We have presented a method, which by repeatedly examining the source of the
current prediction, decides on informative image regions to consider for further
examination. The method is based on the observation that a trained CNN can
be used to highlight relevant image areas even when its final classification is
incorrect. This is a result of training on multiple visual categories using a shared
feature representation. We have built upon Class Activation Maps [3] due to
their simplicity and elegance, though other methods for identifying the source of
the classification decision (e.g., [1]) could probably be employed as well. The pro-
posed method integrates multiple features extracted at different locations and
scales. It makes consistent improvement over baselines on fine-grained classifica-
tion tasks and on tasks where classification depends on fine localized details. It
obtains competitive results on CUB-200-2011 [4], among methods which avoid
strong supervision such as bounding boxes or keypoint annotations. The im-
provements are shown despite the method being trained using only class labels,
avoiding the need for supervision in the form of part annotations or even bound-
ing boxes. In future work, it would be interesting to examine the use of recurrent
nets (RNN, LSTM [32]) to automatically learn sequential processes, which in-
crementally improve classification results, extending the approach described in
the current work.
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