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Abstract

Recent results of [[1]] suggest that square loss performs on par with cross-entropy loss in classifica-
tion tasks for deep networks. While the theoretical understanding of training deep networks with
the cross-entropy loss has been growing ([2]] and [[3]]), the study of square loss for classification has
been lacking. Here we consider a toy model of the dynamics of gradient flow under the square loss
in ReLU networks. We show that convergence to a solution with the absolute minimum norm is
expected when normalization by a Lagrange multiplier (LN) is used together with Weight Decay
(WD). In the absence of LN+WD, good solutions for classification may still be achieved because of
the implicit bias towards small norm solutions in the GD dynamics introduced by close-to-zero initial
conditions on the norms of the weights, similar to the case of overparametrized linear networks. The
main property of the minimizers that bounds their expected error is the product p of the Frobenius
norms of each layer weight matrices: we prove that among all the close-to-interpolating solutions, the
ones associated with smaller p have better margin and better bounds on the expected classification
error. We also prove that quasi-interpolating solutions obtained by gradient descent in the presence
of WD are expected to show the recently discovered behavior of Neural Collapse [4]] and describe
other predictions. We discuss how to extend our framework to gradient descent and to multiclass clas-
sification. Normalization by Lagrange multiplier is similar but not identical to commonly use batch
normalization and weight normalization. A comparison between them illuminates why normalization
is important for convergence and explain differences between normalization techniques.

We perform numerical simulations to support our theoretical analysis.

1 Introduction

A widely held belief in the last few years has been that the cross-entropy loss is superior to the square
loss when training deep networks for classification problems. As such, the attempts at understanding
the theory of deep learning has been largely focused on exponential-type losses [12} 3], like the cross-
entropy. For these losses, the predictive ability of deep networks depends on the implicit complexity
control of Gradient Descent algorithms that leads to asymptotic maximization of the classification
margin on the training set [5} 2, [6]]. Recently however, 1] has demonstrated empirically that it is
possible to achieve the same level of performance, if not better, using the square loss, paralleling older
results for Support Vector Machines (SVMs) [7]]. Can a theoretical analysis explain when and why
regression should work well for classification? This question was the original motivation for previous
versions of this paper[[8]]. In the meantime, several relevant papers have appeared and other related
questions, in particular around a better understanding of normalization, have been asked. The present
paper tries to cover these topics.

In deep learning, unlike the case of linear networks, we expect (in the absence of regularization)
several global minima with zero square loss, thus corresponding to interpolating solutions (in general
degenerate, see [9)[10] and reference therein). Although all the interpolating solutions are optimal
solutions of the regression problem, they will in general correspond to different margins and to different



expected classification performance. In other words, zero square loss does not imply by itself neither
large margin nor good classification on a test set. When can we expect the solutions of the regression
problem obtained by GD to have large margin?

We introduce a toy model of the training procedure that uses square loss, binary classification,
gradient flow and Lagarnage multipliers for normalizing the weights. With this simple model we show
that obtaining large margin interpolating solutions depends on the scale of initialization of the weights
close to zero, in the absence of weight decay. We describe the dynamics of the norm of the deep network
parameters, and show that large margin solutions can be obtained using small initializations. In the
presence of weight decay, perfect interpolation cannot occur and is replaced by quasi-interpolation of the
labels. In the special case of binary classification case in which y,, = %1, quasi-interpolation is defined
as | f(zn) —yn| <k, Vn, where € is small. Our experiments and analysis of the dynamics show that,
depending on the weight decay parameter, there may be independence from initial conditions, as has
been observed in [[I]]. With both weight decay and normalization, we show that weight decay helps
stabilize the solutions of the normalized weights, in addition to its role in the dynamics of the norm.

We then describe how to extend our toy model to include multiclass classification, gradient descent
and batch normalization. A comparison of LN with BN and WN is particularly interesting for explaining
the role of normalization in training deep networks and the differences between different normalization
techniques.

Finally, we show that these quasi-interpolating solutions satisfy the recently discovered Neural
Collapse (NC) phenomenon [4]]. According to Neural Collapse, a dramatic simplification of deep
network dynamics takes place — not only do all the margins become very similar to each other, but
the last layer classifiers and the penultimate layer features form the geometrical structure of a simplex
equiangular tight frame (ETF). Here we prove the emergence of Neural Collapse for the square loss
and for exponential-type loss functions.

Our Contributions The main contributions of our paper are:

e We analyze the dynamics of deep network parameters, their norm, and the margins under
gradient flow on the square loss, using a simple Lagrange normalization (LN) technique. We
describe the evolution of the norm, and the role of Weight Decay and normalization in the
training dynamics.

o We extend the analysis to GD.
e We extend the analysis to multiclass classification. THIS NEEDS TO BE DONE

e A comparison between LN and more standard techniques such as batch normalization (BN) and
weight normalization (WN) illuminates the role of normalization in training deep networks and
the differences between different normalization techniques. THIS NEEDS TO BE DONE

e We show that under certain assumptions, critical points of Gradient Descent with Weight Decay
satisfy the conditions of Neural Collapse for both square and exponential loss functions. Our
proof technique also allows us to find the relationship between the Simplex ETF and the margin
of the solution.

e We support our conclusions with experiments.

Outline We structure the rest of the paper as follows. We start describing related work. In section 3]
we describe the dynamics of gradient flow training under the square loss for a binary classification
problem. We use an analysis of the dynamics to obtain insights about the role of Weight Decay and
Batch/Weight Normalization. In section [§|we present and describe our experiments on CIFAR10 that
highlight the insights we presented in section 8] In section [7] we present our derivation of Neural
Collapse when training on the square loss, while the supplementary material extends the proof to the
case of exponential loss functions. We conclude in section 9| with a discussion of our results and their
implications for generalization.



2 Related Work

There has been much recent work on the analysis of deep networks and linear models trained using
exponential-type losses for classification. The implicit bias of Gradient Descent towards margin
maximizing solutions under exponential type losses was shown for linear models with separable data
in [[11]] and for deep networks in [22}(3, 12} [13]]. Recent interest in using the square loss for classification
has been spurred by the experiments in [[I]], though the practice of using the square loss is much older
[[7]. Muthukumar et. al. [[14] recently showed for linear models that interpolating solutions for the
square loss are equivalent to the solutions to the hard margin SVM problem (see also [[§]]). Recent
work also studied interpolating kernel machines [[15}[16]] which use the square loss for classification.

We are interested in how this translates to the case of deep networks.

In the recent past, there have been a number of papers analyzing deep networks trained with the
square loss. These include [[17, 18] that show how to recover the parameters of a neural network by
training on data sampled from it. The square loss has also been used in analyzing convergence of
training in the Neural Tangent Kernel (NTK) regime [[19, 20, 21]]. Detailed analyses of two-layer neural
networks such as [22, 23} 24]] typically use the square loss as an objective function. However these
papers do not specifically consider the task of classification.

Neural Collapse (NC) [4] is a recently discovered empirical phenomenon that occurs when training
deep classifiers using the cross-entropy loss. Since its discovery, there have been a few papers analyti-
cally proving its emergence. In [25]] Mixon et. al. show NC in the regime of "unconstrained features".
Other papers have shown the emergence of NC when using the cross entropy loss [26} 27} 28]]. While
preparing this paper, we became aware of recent results by Ergen and Pilanci [29] (see also [30]) who
derived neural collapse for the square loss, through a convex dual formulation of deep networks. Our
independent derivation is different and uses simple properties of the dynamics.

3 Dynamics of Gradient Flow on the Square Loss: a toy model

In this section we study training a deep RELU network by minimizing the square loss for a classification
problem. We assume several simplifying conditions, therefore the term toy model. We will discuss how
to relax them in section] In our analysis we assume a normalization technique used during training as
well as regularization (also called weight decay), since such mechanisms seem essential for reliably
training deep networks using gradient descent[31]], are commonly used and were used in most of the
experiments by [[1I].

3.1 Assumptions
They consist of the following three assumptions:
e we consider the case of binary classification;

e we model the discrete Gradient Descent algorithm in terms of the continuous Gradient Flow.
This is tantamount to assuming that the learning rate in GD is infinitesimally small;

e normalization of the weights is modeled adding a Lagrange multiplier term to a modified square
loss function.

3.2 Definitions

We start by considering a binary classification problem given a training dataset S = {(x,,,¥,)} where
z, € R? are the inputs (normalized such that ||z,,|| < 1) and y,, = +1 are the labels. We use deep
rectified homogenousn network with L layers to solve this problem. The basic form of the networks
is fw : R? - R, fw(z) =Wro(Wr_1...0(Wix)...), where z € R? is the input to the network and
o :R = R, o(x) = max(0, z) is the rectified linear unit (ReLU) activation function that is applied
coordinate-wise at each layer. The last layer of the network is linear. We define f,, = fy (x,) (the
network of Figure , evaluated on the training sample ,,).



3.2.1 Network parametrization

Due to the positive homogeneity of ReLU, one can reparametrize fy () by considering normalizedﬂ
weight matrices Vj, = HTWr;iﬂ and define py, = ||[Wj|| obtaining fw (z) = prLVio (pr—1...0 (mViz)...).
Because of homogeneity of the RELU it is possible to pull out the product of the layer norms as
p = I1i px and write fy (x) = pfv(x) = pVio (Vi1 ...0 (Viz)...). Notice that the two networks —
fw (z) and pfy () — are equivalent reparametrizations (if p = [], px) but optimization is in general
affected by reparametrization.

Figure 1: Two parametrizations of a deep network. The thick line in each box represents the RELU nonlinearity.
Each box corresponds to a layer. We use network A) in the case in which the weight matrices Wy, = pi, Vi, with
[|Vk|| = 1 are not normalized by an algorithm like LM or BN. We use network B) when the weight matrices Vj,
at each layer are actively normalized and only the last layer (pr V1) is not under normalization.

3.2.2 Toy model

We assume that there is a normalization stage. In practice this is usually performed using either batch
normalization (BN) or weight normalization (WN). BN consists of standardizing the output of the
units in each layer to have zero mean and unit variance. WN normalizes the weight matrices in a way
which is more similar to the tangent gradient method (section 10 in [? ]). In our toy model we make
here a significant simplifying assumption: we model normalization using a Lagrange multiplier term
added to the loss. We will later discuss how this is different from the usual normalization algorithms.

In the presence of normalization, we assume as shown in Figure[T| B that all layers but the last one
are normalized (at convergence) via a Lagrange multiplier added to the loss. Thus the weight matrices

1We choose the Frobenius norm here to simplify our calculations. While a different choice of norm (spectral, ¢, £2,1) may
help prove tighter generalization bounds, they are functionally equivalent for the purpose of analyzing dynamics and the margin
(as noted in section 3.4 of [132]]).



Vi, k=1,---, L are constrained by the Lagrange multiplier term during gradient descent to be close
to and eventually converge to unit norm matrices; notice that normalizing V7, with a p multiplier after
it is equivalent to let Wy, = pV be unnormalized. Thus f is a network that under normalization is
supposed to converge to a network with L — 1 normalized layers.

Constrained minimization of £ = Z (pfn — yn)? + Ap? under the constraint ||V ||> = 1 leads to
m1n1m1z1ng L= (pfn—uyn)+v S w1 (|IV&|[* = 1) + Ap?. Here and in the following we rewrite

(pfn yn) (1 - pfn) with fn frn¥n
Thus the loss functional is

L
L= (1=pfu)* +v ) (IVilP = 1)+ A (1)
n k=1
3.2.3 Dynamics
Gradient flow from Equation [T gives
. oL = =
=7, =22 =pf)fn =2 2)
and
VL=————2Z —pfn)pao O 3)
vy, "oV
and for k < L _
; oL = O0f,
Vi = o, -2 Zn:(l - an)PTVk —2vVy (4)

In the latter equation we can use the unit norm constraint on the ||V;|| to determine the Lagrange
multiplier v. Using the structural lemma (Appendlx , the constraint ||V||> = 1 implies that BHV‘ I —

Vk Vk = 0, which glves V== Zn(p f?% pynfn)
Thus the gradient flow is the following dynamical system

_9fn
=2 [(1- 6
DN A AT (6)
;0oL — . O0f,
Vi=—gp = 2;(1 Pl gy 7)
3.2.4 Critical points
The critical points of the p dynamics with Weight Decay occur when —” = 0, which happens when
P = Peq —
n f’fl
Peq = 2772 (8)
>\ + Zn f?L
The critical points of the V;, dynamics — that is when Vj, = 0 - satisfy
- —of
1- Vif, — 557)] = 0. 9
Sl = ) AT = 52 (9)

n

Notice that for A — 0, the critical points peq = 0 imply exact interpolation. Furthermore the critical
points of the dynamical system in p and V}, are the critical points of j because of the following

Lemma 1 For every p there are critical points of V.



Notice however that the critical points of V}, for a given p are not necessarily consistenﬂ with the
values of f,, required by the critical points of p (since the V;, determine the f,,).

Let us here introduce a somewhat unusual definition. We define critical points of SGD as z =
g(xz,) = 0¥n = 1,--- |, N instead of the standard definition of the critical points of GD defined as
z= ij:l g(xy) = 0. This definition makes sense for any minibatch size < N because of Lemma |§Iin
the Appendix.

If we look for the critical points of SGD with minibatch 1 (see Appendix[40]) then

VET (- oT) = - p7,) W (10)
k

3.2.5 Separability, average separability, margin and average margin

Separability is defined as the condition y,, f,, = f,, > 0, Vn (all training samples are classified correctly).
If >, f, > 0, we say that average separability is satisfied.

Notice that if fi is a zero loss solution of the regression problem, then fuw (2,) = y,, Vn. Thisis
equivalent to

pfn =Yn (11)

where we call f,, the margin for x,,. Thus by multiplying both sides of Equation[I1]by y,, and summing
both sides over n gives p ) f,, = N. Thus the norm p of a minimizer is inversely related to its average
margin in the limit of A = 0, thatis ; = 5 3_,, f,,, where  3°,, f, is the average margin. Note that

fn < 1since ||z]| < 1, and the weight matrices are normalized.

3.2.6 Norm dynamics

Lemma 2 Suppose that at a small t after initialization p(t) < po and p(t) > 0. Then p(t) > 0, Yt until
p(t) = peq, Where peq is the critical point with min p.

If p(t) = 0 and f(x) = 0 the dynamics is in a critical unstable point. A small perturbation will either
result in p < 0 with p going back to zero or in p > 0 with p growing. The observation is that until
p(t) = peq, rho > 0, that is p grows; otherwise if rho < 0 it would have to attain because of continuity of
the solutions of a dynamical system, the value p = 0 that is reach a critical point at which point p = p,,.
Notice that whereas this holds for gradient flow, it does not for gradient descent. As we will show
later, discretization is similar to adding a second derivative in np to the dynamical system introducing
oscillations in the dynamics.

3.2.7 Margins

Lemma 3 At a global minimum of the loss that has minimum norm, all margins f,, Vn are within \po of
each other, where py is the minimum norm attained for A = 0.

For A\ = 0 the margins are all identical. The proof of the Lemma is in Appendix[E| The lemma does
not say whether SGD will converge to a global minimum. The appendix discusses the issue.

3.2.8 Qualitative description of the dynamics

Recall that 0 < ?n <1, Vn. Depending on the number of layers, the maximum margin that the
network can achieve is usually much smaller than 1 because the weight matrices have unit norm and the
bound < 1 is usually very loose. Thus in order for pf,,y, to be equal to 1 — which means interpolation —
p needs to be at least 1 and usually significantly larger. Let us call this minimum value for the given
data set pmin.

Let us assume that the network of Figure I|is initialized with small p. Assume then that average
separability holds at some time ¢ while p < pmin. Then Lemma 2|implies p > 0 until p = 0, possibly

2We assume sufficient overparametrization Equation@]to enforce normalization of the V}, while still allowing interpolation by
the pfn. Recall that we assume overparametrization with the W},: here we assume that adding a single normalization constraint
for each k does not eliminate overparametrization.



at po = pPmin. Thus p grows monotonically until it reaches an equilibrium value. If we start from
small p we expect p to be close to pmin. Recall that for A = 0 this corresponds to a global minimum
L = 0 and that, not only global minima are degenerate, but for sufficient overparametrization they are
connected in a single degenarate valley thus resulting in a large attractive basin in the loss landscape
(see Appendix[A]). For A = 0 at £ = 0 all the f,, have the same value, that is all the margins are the
same. Similar considerations hold for A > 0, even if in this case interpolation is impossible and is
replaced for small X by what we call quasi-interpolation (with an error e < Apy). Remarkably, under
the assumption that SGD with mini batch size 1 reaches an equilibrium — that is p does not change
between iterations — which is a global minimum, Lemma [3|shows that all the margins can be very close
even when A > 0, provided A > 0 is small enough (which is usually the case).

If we initialize a network with large norm, Equation [2shows that average separability yields and
p < 0. This implies that the norm of the network will decreases until an equilibrium is reached. However
since p > 1, we expect to find an interpolating (or near interpolating) solution that is reasonably
close to the initialization, since for large p it is usually possible to find a set of weights V7, such that
p|fn] = 1. This is because of the following intuition: if there are at least N units in layer L and their
values are fixed, we can expect under rather weak conditions that V;, exists to yield interpolation. These
large p, small f,, solutions are related to the Neural Tangent Kernel (NTK) solutions [21]], where the
parameters do not move too far from their initialization.

To sum up, starting from small initialization, gradient techniques will explore critical points with p
growing from zero. Thus quasi-interpolating solutions with small pq (corresponding to large margin
solutions) may be found before large p.q quasi-interpolating solutions which have worse margin (See
Fig. [2]), even in the absence of regularization but especially in its presence.

3.2.9 Role of Weight Decay

Equation[§|shows that weight decay performs the traditional role of promoting solutions with small
norm. In the case of large initialization, we can see from that, since |f,|?> < 1, the scale of Peq
is determined by A. Hence weight decay stabilizes the solution of gradient descent with respect to
initialization (See Fig. [3)).

Norm regularization is however not the only contribution of weight decay. Equation[I0]shows that
the critical points V;, = 0 may not be normalized properly if the solution interpolates. In particular an
un-normalized interpolating solution can satisfy the equilibrium equations for V;.. This is expected
from the constrained dynamics which by itself constrains the norm of the V}, to not change during the
iterationsﬂ By preventing exact interpolation, weight decay ensures that the critical points of the Vj,
dynamics lie on the unit Frobenius norm ball. As we will discuss later, by preventing exact interpolation,
gradient flow with weight decay under the square loss shows at convergence the phenomenon of
Neural Collapse.

3.2.10 Un-normalized vs normalized dynamics

As shown in the Appendix[F| the equilibria with and without normalization are the same for p and Vj,
but the dynamics is somewhat different . Consider Figure(l} Assume that A is un-normalized, that is
optimized via GD without Lagrange multipliers and B is normalized, that is optimized via GD with
the Lagrange multiplier term. For A, consider, for simplicity, the case in which all the norms pj, of
the weight matrices 1,--- , L — 1 are initialized with the same value. Then because of Lemmaall
the p,, Vk=1,.--,L—1will change together and remain equal to each other. It is the possible to
consider p for the network of FigureA as p = pF and look at its dynamics. Consider the case of A = 0.
The equations for the un-normalized case are

p=2Lp T [>T p(Fn)? (12)
and ' '
: bs _ of, _
Vi=—2p7 Y (1- pf")(avk = Vifn) (13)

n

3Numerical simulations show that even for linear degenerate networks convergence is independent of initial conditions only
if A > 0. In particular, normalization is then effective at po, unlike the A = 0 case.



The equations for the normalized case (Figure[IB) are

=20} farn — > p(fn)?] (14)
and
V=20 310~ pT)T, - ‘2.]; ) (15)

Recall that for A = 0 py corresponds to the inverse of the margin: thus p% = fn, since f,, is the same

for all n. Thus V4, is proportional to the inverse of the margin in the normalized case but to something
smaller in the un-normalized case. The factor combines with the learning rate when Gradient Descent
replaces gradient flow. Intuitively, the strategy to decrease the learning rate when the margin is large
seems a good strategy, since large margin corresponds to "good" minima in terms of generalization
(for classification).

4 Margin and generalization

Assume that the square loss is exactly zero and the margins f,, are all the same. Then recall simple
generalization bounds that hold with probability at least (1 — 0), Vg € G of the form [33]]:

In(3)
ﬁ (16)

IL(g) — L(g)| < e1RN(G) + ¢
where L(g) = E[(,(g(x),y)] is the expected loss, L(g) is the empirical loss, Ry (G) is the empirical
Rademacher average of the class of functions G measuring its complexity; ci, c; are constants that
reflect the Lipschitz constant of the loss function and the architecture of the network. The loss function
here is the ramp loss £(g(x),y) defined as

1, if yy' <0,
Cy,y) =41-%, if 0<yy <,
0, if yy' >n.

We define ¢,—(y,y’) as the standard 0 — 1 classification error and observe that (,—o(y,y’) <
Cy>o0(y,y')-

We now consider two solutions with zero empirical loss of the square loss regression problem
obtained with the same ReLU deep network and corresponding to two different minima with two
different ps. Let us call them ¢%(z) = p,f%(z) and ¢°(x) = pp, f°(x). Using the notation of this paper,
the functions f, and f;, correspond to networks with normalized weight matrices at each layer.

Let us assume that p, < pp.

We now use the observation that, because of homogeneity of the RELU networks, the empirical
Rademacher complexity satisfies the property,

Ry (G) = pRn (F), (17)

where G is the space of functions of our unnormalized networks and F denotes the corresponding
normalized networks. This observation allows us to use the bound Equation [16|and the fact that

the empirical L., for both functions is the same to write Lo(f*) = Lo(F®) < c1paRy (F) + ca1/ 12(1\%[)
Lo(f*) = Lo(F*) < c1ppRy (F) + c2

h;(]\%,) . The bounds have the form

Lo(f?) < Apa + € (18)

and
Lo(f%) < Apy + € (19)



Thus the upper bound for the expected error Lo(f¢) is better than the bound for Lo (f?). Of course
this is just an upper bound. Lower bounds are not available. As a consequence this result does not
guarantee that a solution with smaller p will always have a smaller expected error than a solution with
larger p.

5 Extending the toy model
6 Toy model with GD

Work in [34]] shows that a natural approximation to gradient descent within a continuous gradient
flow formulation is to add to the loss functional £ a term proportional to 7, consisting of the norm
square of the gradient of £. This is equivalent (see [35]) to replacing in the gradient flow equation
terms like & with terms that are 7 + &. The informal explanation is that the gradient descent term
z(t +n) — z(t) = —nF can be approximated by expanding x(t + n) in a Taylor series for small ;) to a
quadratic approximation, that is z(t + ) ~ x(t) + n&(t) + gx(t) Thus the gradient descent equation
becomes i (t) 4+ 4#(t) = —F.
With this approximation Equations |§Iand become (taking into account that £ =Y, (1—pf,,)? +
L-1 2 2
v k= IVE[® +20%)

3i+p =20 (1= pF)Fal =22 (20)
M, Ve = 205101 pF) (VT — I0)) k< L (21)
2 " " 1%

99,
oWy,

IWL+ Wy =2 [(1=5,) 572 - 202 (22)

As a sanity check we see that WTW = pp since Wy, = pLVy, VLl =1, gn = pfn-
We multiply the last equation on the left by W7 obtaining

gWTWL +WTWL =23 (1 -3,)5, — 2AW? (23)

We change variables in the last equation:
TWTWL+WTWe =20 [(1= pF,)F,) = 207 (24)
Since W = pVL + pVr, and Wy = 2pVL + pVL + pV, the last equation becomes for p = 0

T . . — =
VT IV +pVT Ve = 20" [(1 = pF,)F) — 2007 (25)

Now notice the following simple relation between accelerations and velocities: B(VT:V) =2vTV
and Z0V) _ 2VTV + VTV) =2(]|V||2 + VTV). If the norm ||V, || is constant, then PWIV) . 1t

a7 . ot
follows VTV = —||V||2.
Thus - o
p2VT§VL = 2/0 Z((l - pfn)fn - 2)‘p2 (26)
— plIVLIP =23 (1 = pF) o — 200 (27)

Equationimplies that when p = 0 then ||V ]|? = 0.
The new dynamical system with the 7 term coming from discretization, may show oscillations(the

1 -2
frequency of the "undamped oscillations" is w). In the equations above whenever 1 >

Ve, fi + 2, the linearized dynamics is the dynamics of a damped oscillator.

9



6.1 Multiclass
For Andy and Akshay to do

7 Neural Collapse

In a recent paper Papyan, Han and Donoho[H4]] described four empirical properties of the terminal phase
of training (TPT) deep networks, using the cross-entropy loss function. TPT begins at the epoch where
training error first vanishes. During TPT, the training error stays effectively zero, while training loss is
pushed toward zero. Direct empirical measurements expose an inductive bias they call Neural Collapse
(NC), involving four interconnected phenomena. (NC1) Cross-example within-class variability of
last-layer training activations collapses to zero, as the individual activations themselves collapse to
their class means. (NC2) The class means collapse to the vertices of a simplex equiangular tight frame
(ETF). (NC3) Up to rescaling, the last-layer classifiers collapse to the class means or in other words,
to the simplex ETF (i.e., to a self-dual configuration). (NC4) For a given activation, the classifier’s
decision collapses to simply choosing whichever class has the closest train class mean (i.e., the nearest
class center [NCC] decision rule).

In this section we show that the phenomenon of neural collapse can be derived from the critical
points of gradient flow under the square loss with Weight Decay. We consider a multiclass classification
problem with C' classes with a balanced training dataset S = {(z, y»)} that has N training examples
per class. We train a ReLU deep network fy : R? — RY, fw(x) = Wpo(Wr_q...Wooc(Wiz)...)
with Gradient Descent on the square loss with Weight Decay on the parameters of the network. This

architecture differs from the one considered in section 3|in that it has C' outputs instead of a scalar
output. Let the output of the network be fy (z) = | é‘}) ()... v(g ) (z)]", and the one-hot target vectors
be y, = [yg) .. yf,c)]T. We will also follow the notation of [4]] and use h(z) to denote the last layer
features of the deep network. This means that f‘g;) (x) = (W7, h(z)). We make a key assumption here,
that the solution obtained by Gradient Descent satisfies the following condition

Assumption 1 (Symmetric Quasi-interpolation) Consider a C-class classification problem with inputs in
a feature space X, a classifier f : X — RY symmetrically quasi-interpolates a training dataset S = {(x,, yn)}
if for all training examples x,,. in class c, f(c)(;vn(c)) =1—¢ and f(cl) (Tn(e)) = 53

We observe here that e depends on the Weight Decay parameter A. In the case of binary classification for
instance, with Neural Collapse and quasi-interpolation, and using similar notation as in the previous

section: ,
A0 1l 1—c¢

This brings us to the main result of this section:

€ (28)

Theorem 4 For a ReLU deep network trained on a balanced dataset using gradient flow on the square loss with
weight decay ), critical points of Gradient Flow that satisfy Assumption [2|also satisfy the NC1-4 conditions for
Neural Collapse.

, , 2
Proof Our training objective is L(W) = 1 -V ¢ (yr(f) - &1,) (arn)) + 237, [[Wi]|%. We use gra-

2 n=1 =
dient flow to train the network: %—Vf =- aaTﬁv' Let us analyze the dynamics of the last layer, considering
each classifier vector Wy of W, separately:

oW

o = 2 W = (WE h(za))h(zn) = AW
i (29)
= Z (1 - <W£v h(wn(c)»)h(fn(c)) + Z (—<W£, h(xn(c’)»)h(xn(c’)) - A\Wg
neN (c) neN(c’),c'#c

Let us consider solutions that achieve symmetric quasi-interpolation, with f‘s{}) (Tpey) = 1 —¢ and

f‘g[i) (Tp(ery) = &= Itis fairly straightforward to see that since f&i) and W} do not depend on n, neither

does h(x,), which shows NC1. Under the conditions of NC1 we know that all feature vectors in a class

10



collapse to the class mean, i.e., (2, (.)) = . Let us denote the global feature mean by jg = % Do He-
This means we have:

oWy CNe
= O —t WC = — e —
This implies that the last layer parameters W, are a scaled version of the centered class-wise feature
matrix M = [... pc — pie - - -J. Thus at equilibrium, with quasi interpolation of the training labels, we
obtain HV}//VW = % This is the condition for NC3.

From the gradient flow equations, we can also see that at equilibrium, with quasi interpolation, all
classifier vectors in the last layer (17, and hence . — pe) have the same norm:

owe . e ) .
(W, Tk ) = S0~ 18 57 ) = MW =0

n

w
(31)
]X (6 N Cg 162)

= |WLll3 =~

From the quasi-interpolation of the correct class label we have that (W7, u.) = 1 — € which means
(Wi, ne) + (Wi, pe — ng) = 1 — . Now using

ANC -1 ,
Wi gy =1 - 2D ez
CNe (32)
—1_6_ng E—LE2 —l
B CNe A C-1 -
From the quasi-interpolation of the incorrect class labels, we have that (W7, ) = ﬁ, which means
(Wi, pwer — pa) + (Wi, pa) = =5 Plugging in the previous result and using yields
)\(C — 1) e o o € 1
onve WLVl =G93 (33)
N VC,>— 1 y CNe o € i _ 1
BILETweg " aCc—-1) " \c-1 C)  CO-1

Here Vf = thfvﬁ' and we use the fact that all the norms ||[W7||, are equal. This completes the proof

that the normalized classifier parameters form an ETF. Moreover since Wi o . — i and all the
proportionality constants are independent of ¢, we obtain ) W} = 0. This completes the proof of the
NC2 condition. NC4 follows then from NC1-NC2, as shown by theorems in [4]]. |

It is of interest to note here that in this quasi interpolation setting, the functional classification margin
is given by 1, = f,, — max.z,, fo =1—€— g5 = 1 — €. The larger the margin, the smaller is e.
Eq. shows that the norms of the classifier weights are given by ||[W¢|3 = &5¢1. As we mentioned
earlier, for a non-zero value of A we expect some small interpolation error e. In the binary case this is
given by Eq. (28)). Plugging this relationship into Eq. we obtain [|W,[|? ~ 21:\7 (1‘]77;)2 1. This means
that the lengths of the classifier simplex ETF are proportional to the margin.

Other settings The main assumptions in the above proof are symmetric quasi-interpolation and the
use of Weight Decay (see section 5 of Supplementary Material). A similar version of the above proof
can be adapted to the case of Stochastic Gradient Descent (SGD), where we can show that the NC
conditions are met in expectation. We also show in section 5 of the Supplementary Material that an
extension of this proof technique to the exponential loss case (a proxy for cross-entropy loss) requires
small batch SGD to achieve the NC1 property.

Predictions We summarize here the main predictions of our analysis about Neural Collapse.

e The theoretical analysis predicts Neural Collapse not only for the case of cross-entropy, for which
it was empirically found, but also for the square loss;

e SGD is required in our proof of NC1 (and hence the other NC conditions) for cross entropy while
for the square loss neural collapse is predicted for SGD as well as GD (under Assumption [2));

11



o Our proof uses Weight Decay for neural collapse (NC1 to NC4) under both the square loss and
the cross entropy, and can also be adapted to the case of normalization and Weight Decay;

e The length of the vectors in the Simplex ETF that defines the classifier is proportional to the
training margin;

e NC1 to NC4 should take place for any quasi - interpolating solutions (in the square loss case),
including solutions that do not have large margin (that is, small p);

e in particular the analysis above predicts Neural Collapse for randomly labeled CIFAR10.

8 Experiments

We conducted a number of experiments on binary classification to support our claims from the analysis
of the dynamics. We conducted our experiments on the standard CIFAR10 dataset [[36]]. Image samples
with class label indices 1 and 2 were extracted for the binary classification task. The total training
and test data sizes are 10000 and 2000, respectively. The model architecture contains 3 convolutional
Layers (the number of channels are 32, 64 and 128, filter size is 3x3) and one fully connected classifier
layer with output number 2. Following each convolution layer, we applied a ReLU nonlinear activation
function and Batch Normalization. Batch Normalization is used with learnable “affine” shifting and
scaling parameters turned off (since they can always be learned by the next layer). The weight matrices
of all layers are initialized with zero-mean normal distribution, scaled by a constant such that the
Frobenius norm of each matrix is one of the initialization value set {0.01, 0.1, 0.5, 1, 3, 5, 10}. The
network was trained using square loss and SGD with batch size 128, momentum 0.9, Weight Decay
(0.01 or 0), constant learning rate 0.01 for 1000 epochs and no data augmentation. Every input to the
network is scaled such that it has norm < 1. The plots in figure and [3|are averaged over 10 different
runs, while figures [2} ] and 5| were made from a single run.

In Fig. 2l we show the dynamics of p alongside train loss and test error. We show results with and
without Weight Decay in the top and bottom rows of Fig. 2| respectively. The left and right columns
correspond to small (0.01) and large (5) initializations respectively. We see that without Weight
Decay, with small initializations, p grows monotonically, while with large initializations it decays
monotonically. We can also see that small initializations without Weight Decay reach minima with
smaller train loss. The top row plots also show that Weight Decay makes the final solutions robust
to the scale of initialization, in terms of p and of the train loss. This robustness is also seen in Fig.
where we plot the training margins (y,, f,,) obtained with and without Weight Decay. In the right plot,
without Weight Decay, the margin distributions depend on the initialization, while in the left plot they
cluster around the same values.

Finally, we would like to setup some motivating empirical evidence for our discussion of Neural
Collapse [4]]. Neural Collapse is the phenomenon in which within class variability disappears, and for
all training samples, the last layer features collapse to their mean. This means that the outputs and
margins also collapse to the same value. We can see this in the left plot of Fig.[5jwhere all of the margin
histograms are concentrated around a single value. We visualize the evolution of the training margins
over the training epochs in Fig. | which shows that the margin distribution concentrates over time. At
the final epoch the margin distribution (colored in yellow) is much narrower than at any intermediate
epochs. We also used measurements similar to those in [4] to confirm that Neural Collapse indeed
occurs by the appropriate metrics. This is shown in Fig. 5| where we trained the same network as
described earlier with a modified learning rate schedule for 350 epochs, and plot the conditions for NC1
and NC2. Section 6 of the supplementary material contains a longer discussion of these conditions,
though one can also be found in [4]].

9 Discussion

An important question is whether Neural Collapse is related to good generalization of the solution of
training. Our analysis suggests that this is not the case: Neural Collapse is a property of the dynamics
independently of the size of the margin which provides an upper bound on the expected error — even
if margin is likely to be just one of the factors determining out-of-sample performance. In fact, our
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Figure 2: Training dynamics of product norm p, training loss and test error over 1000 epochs with small
initialization (0.01) in the first column and large initialization (5) in the second column. The first row is with
Weight Decay = 0.01, and the second row is with Weight Decay = 0.

prediction of Neural Collapse for randomly labeled CIFAR10, has been confirmed in preliminary
experiments by our collaborators.

Despite the fact that Neural Collapse is independent of generalization, can our analysis of the square
loss provide insights on generalization of the solutions of gradient flow? It is well known that large
margin is usually associated with good generalization[33]]; in the meantime it is also broadly recognized
that margin alone does not fully account for generalization in deep nets[[32}[37,[38]]. Margin in fact
provides an upper bound on generalization error, as shown in section 4 of the supplementary material.
Larger margin gives a better upper bound on the generalization error for the same network trained
on the same data. This property can be checked qualitatively by varying the margin using different
degrees of random labels in a binary classification task (see Figure 1 in supplementary material). While
training gives perfect classification and almost zero square loss, the margin on the training set increases
and the test error also increases with the percentage of random labels as shown in the figure 1 in the
supplementary material. However, the simple upper bound given in the same section does not explain
the generalization behavior that we observe for different initializations (see Figure 2 in supplementary
material), where small differences in margin are actually anticorrelated with small differences in test
erTor.

Notice that the generalization bound in Section 4 of the supplementary material does not directly rely
on the Weight Decay parameter A > 0. However, robust convergence to large margins is helped by a non-
zero ), even if A is quite small, because of the associated greater independence from initial conditions
in degenerate minima. This effect is different from the standard explanation that regularization is
needed to force the norm to be small.

The main effect of A > 0 is to eliminate degeneracy of the dynamics at the zero-loss critical points,
where Equation M4|is degenerate if A = 0. In fact, Vi = 0 can be satisfied even when (Viefn — g—{;;) #0,
implying that any interpolating solution can satisfy the equilibrium equations independently of its
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Figure 3: Mean training margins over 10 runs for binary classification on CIFARI0 trained with Batch
Normalization and Weight Decay = 0.01 (left) and without Weight Decay (right) for different initializations
(init. = 0.01,0.1, 0.5, 1, 3, 5 and 10). Weight Decay makes the final training margin robust to initialization, and
concentrates the margin in a narrow band over the training set. The results without Weight Decay are dependent
on initialization, and may result in a wide range of margin values.

600

800

Epochs = 1000
Init. =0.1

0.01 0.03 0.05 0.07

Figure 4: Histogram of | f,,| across 1000 training epochs for binary classification with batch normalization and
weight decay = 0.01, learning rate 0.01, initialization 0.1. We can see that the histogram narrows as training
progresses. The final histogram (in yellow) is concentrated in a narrow band, as expected for the emergence of
NC1.

normalization. This degeneracy is expected, since there are infinite sets of p and V, satisfying pVj, = Wj,.
Normalization thus is not effective at the critical points. Setting A > 0 avoids this degeneracy.

Limitations The theoretical analysis in this paper rests on several assumptions. We showed that the
assumption of a symmetric level of near interpolation implies Neural Collapse. We did not, however,
formally prove that SGD on a randomly initialized network will necessarily converge to near interpola-
tion. Our analysis only says that, with L2 regularization, the critical points of SGD that coincide with
the minimum for the associated py yield similar margins for all n (our proof is for the binary case).
Thus SGD with weight decay and normalization techniques (see supplementary material) is suffi-
cient to yield Neural Collapse. Importantly, the necessity of all the conditions remains an open problem.
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and Machines (CBMM), funded by NSF STC award CCF-1231216. This research was also sponsored
by grants from the National Science Foundation (NSF-0640097, NSF-0827427), and AFSOR-THRL
(FA8650-05-C-7262).
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Figure 5: Neural Collapse occurs during training for binary classification. The key conditions for Neural Collapse
are: (i) NC1 - Variability collapse, which is measured by Tr(3Xy Egl), where Xy, X g are the within and between
class covariances, and (ii) NC2 - equinorm and equiangularity of the mean features {p.} and classifiers {W,}.
We measure the equinorm condition by the standard deviation of the norms of the means (in red) and classifiers
(in blue) across classes, divided by the average of the norms, and the equiangularity condition by the standard
deviation of the inner products of the normalized means (in red) and the normalized classifiers (in blue), divided
by the average inner product. This network was trained on two classes of CIFAR10 with Batch Normalization
and Weight Decay = 0.01, learning rate 0.01, initialization 3 for 350 epochs with a stepped learning rate decay
schedule.
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