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In solving a system of n linear equations in d variables Ax = b, the
condition number of the n, d matrix A measures how much errors in
the data b affect the solution x. Estimates of this type are important
in many inverse problems. An example is machine learning where
the key task is to estimate an underlying function from a set of mea-
surements at random points in a high dimensional space and where
low sensitivity to error in the data is a requirement for good predic-
tive performance. Here we discuss the simple observation, which is
known but surprisingly little quoted (see Theorem 4.2 in (1)): when
the columns of A are random vectors, the condition number of A is
highest if d = n, that is when the inverse of A exists. An overdeter-
mined system (n > d) as well as an underdetermined system (n < d),
for which the pseudoinverse must be used instead of the inverse,
typically have significantly better, that is lower, condition numbers.
Thus the condition number of A plotted as function of d shows a
double descent behavior with a peak at d = n.
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The concept of condition number was introduced by Turing1

in 1948 (2) and has since played a key role in the theory2

of algorithms. The condition number of a function measures3

how much the output value of the function can change for a4

small change in the input argument. The condition number5

most commonly associated with Ax = b is defined as the6

ratio of the relative error in x to the relative error in the7

data b. In terms of the l2 norm on x and b, this leads to the8

following definition for the the condition number of A, denoted9

by κ(A) = ||A||||A†|| with ||A|| being the operator norm of10

the m,n matrix A and A† the pseudoinverse. The operator11

norm is defined as ||A|| = supx ||Ax|| with ||x|| = 1. it is easy12

to see that κ(A) = σmax(A)
σmin(A) is the ratio of the maximal and13

minimal singular values of A.14

The plot in the Figure 1 can be easily checked by calling15

the function “cond” in MatLab. The double descent pattern is16

apparently quite robust to choices of d and n, such that their17

ratio γ = n
d
is the same. The fact that the worse conditioning18

occurs when the inverse exists uniquely (γ = 1) seems at first19

surprising. This simple observation must have been realized20

by many. The proof is also simple because of a well-known21

characterization of the eigenvalues of random matrices (3). In22

fact, consider a n× d random matrix A.23

We characterize its condition number by using the24

Marchenko–Pastur semi-circle law, which describes the asymp-25

totic behavior of singular values of large rectangular random26

matrices. We assume that the entries of A are i.d.d. random27

variables with mean zero and variance one. We consider the28

limit for n→∞ with n
d
→ γ.29

Marchenko–Pastur claims that for γ < 1 the smallest and30

the largest singular values of 1
d
AAT are, respectively (1 −31 √

γ)2 and (1 +√γ)2. For γ > 1 the largest and the smallest32

eigenvalues of 1
n
ATA are (1 +

√
γ−1)2 and (1−

√
γ−1)2.33

When γ = 1, and the entries are i.i.d. sub-Gaussian, the34

maximal singular value is concentrated around 2, but the mini- 35

mal one is min{n−1, d−1}(max{
√
n−
√
d− 1,

√
d−
√
n− 1})2

36

was observed in (4), for normal random variables it was first 37

observed in (5). 38

Fo a system of linear equations Ax = b, when n ≈ d, it 39

is better to reduce/increase the data/variables (i.e. ”better” 40

to have more variables than data). The condition number 41

associated with the minimum norm solution x = A†b is usually 42

much better – that is closer to 1 – than the condition number 43

of a well-determined system with n = d, if the matrix A is 44

random (see for instance (6, 7)). 45

There are interesting observations for machine learning. 46

The most obvious is that kernel methods, which are a popular 47

workhorse in machine learning, do not require regularization in 48

order to be well-conditioned, if the kernel matrices are based on 49

high dimensional i.i.d data, especially when γ < 1. This claim 50

follows from recent results on kernels. The simplest form of the 51

kernel matrix K(xj , xi) is K = XXT . We consider random 52

matrices whose entries are K(xTi xj) with i.i.d. vectors xi 53

in Rp with normalized distribution (in Figure 2 we consider 54

a radial kernel K(||xi − xj ||2) for which similar arguments 55

are likely to hold). Assuming that f is sufficiently smooth 56

and the distribution of xi’s is sufficiently nice, El Karoui (8) 57

showed that the spectral distributions of kernel dot-product 58

matrices K(xi, xj) = f( 1
d
XXT ) behave as if f is linear in the 59

Marchenko–Pastur limit. In fact, El Karoui showed that under 60

mild conditions, the kernel matrix is asymptotically equivalent 61

to a linear combination of XXT , the all-1’s matrix, and the 62

identity, and hence the limiting spectrum is Marcenko-Pastur. 63

As a consequence, the claims about the condition number of a 64

random matrix A also apply to kernel matrices with random 65

data, see Figure 2. 66

More intriguing is the fact that the behavior of the condition 67

number of K† is similar to the double descent behavior of 68

the test error by linear and kernel interpolants, which after 69

pioneering work by Belkin ((9), see also (10)) has recently 70

attracted much attention (9, 11–16). We will address the key 71

role of stability for the theory of machine learning in a separate 72

paper. 73
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Fig. 1. The typical ”double descent" of a n × d matrix with N (0, 1) independent
entries. The condition number is the worst when n = d.
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Fig. 2. Typical ”double descent" of the condition number of the matrix K(xi, xj),

where K(x, x′) = exp
(
− ||x−x

′||2

2σ2

)
(radial kernel) and x1, . . . xn are i.i.d.

N (0, Id×d). The condition number exhibts the same behavior as in the linear case
(here σ = 5).

7. Hastie T, Montanari A, Rosset S, Tibshirani RJ (2019) Surprises in high-dimensional ridgeless 87

least squares interpolation. arXiv preprint arXiv:1903.08560. 88

8. El Karoui N (2010) The spectrum of kernel random matrices. arXiv e-prints p. 89

arXiv:1001.0492. 90

9. Belkin M, Hsu D, Ma S, Mandal S (2019) Reconciling modern machine-learning practice 91

and the classical bias–variance trade-off. Proceedings of the National Academy of Sciences 92

116(32):15849–15854. 93

10. Advani MS, Saxe AM (2017) High-dimensional dynamics of generalization error in neural 94

networks. arXiv e-prints p. arXiv:1710.03667. 95

11. Belkin M, Hsu D, Xu J (2019) Two models of double descent for weak features. CoRR 96

abs/1903.07571. 97

12. Belkin M, Ma S, Mandal S (2018) To understand deep learning we need to understand kernel 98

learning. ArXiv e-prints. 99

13. Mei S, Montanari A (2019) The generalization error of random features regression: Precise 100

asymptotics and double descent curve. arXiv e-prints p. arXiv:1908.05355. 101

14. Rakhlin A, Zhai X (2018) Consistency of Interpolation with Laplace Kernels is a High- 102

Dimensional Phenomenon. arXiv e-prints p. arXiv:1812.11167. 103

15. Liang T, Rakhlin A (2018) Just Interpolate: Kernel ”Ridgeless” Regression Can Generalize. 104

arXiv e-prints p. arXiv:1808.00387. 105

16. Hastie T, Montanari A, Rosset S, Tibshirani RJ (2019) Surprises in High-Dimensional Ridge- 106

less Least Squares Interpolation. arXiv e-prints p. arXiv:1903.08560. 107

2 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Poggio

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX

