CENTER FOR
Brains
Minds+
Machines

CBMM Memo No. 112 March 13, 2022

Generalization in deep network classifiers trained
with the square loss!

Tomaso Poggio, Qianli Liao and Mengjia Xu

Abstract

Square loss has been observed to perform well in classification tasks. However, a theoretical
justification is so far lacking, unlike the cross-entropy case. Here we discuss several observations on
the dynamics of gradient flow under the square loss in ReLU networks. We show that convergence to a
solution with the absolute minimum product p of the Frobenius norms of the weight matrices is expected
when normalization techniques such as Weight Normalization or Batch Normalization (BN) are used
together with Weight Decay (WD). In the absence of BN+WD, good solutions for classification may still
be achieved because of the implicit bias towards small norm solutions in the GD dynamics introduced
by close-to-zero initial conditions. A main property of the minimizers that bounds their expected error
is the norm, since standard margin bounds show that for a fixed network architecture and the same
trainin set, the interpolating solutions associated with a smaller value of p have better margin and thus
better bounds on the expected classification error. The theory yields several predictions, including the
role of normalization and weight decay. A main set of predictions is about Papyan, Han and Doncho’s
Neural Collapse and the conditions under which Neural Collapse is expected to take place. Another
interesting prediction is that regularization together with minimization of the loss under normalization
of the weight matrices produces a bias towards rank one solutions for the weight matrices.

¥ This material is based upon work supported by the Center for Brains,
Minds and Machines (CBMM), funded by NSF STC award CCF-1231216.

I'This is the last version of a paper first published in August 2020; the main equations and the generalization approach were described in September
2020; the predictions about Neural Collapse for binary classification were first reported in November 2020; this version has corrected derivations of Neural
Collapse for the multiclass, square loss case.

Generalization in deep network classifiers trained with the square
loss

Tomaso Poggio, Qianli Liao and Mengjia Xu

Abstract

Square loss has been observed to perform well in classification tasks. However, a theoretical
justification is lacking, unlike the cross-entropy [I] case for which an asymptotic analysis has
been proposed (see [2] and [3] and references therein). Here we discuss several observations
on the dynamics of gradient flow under the square loss in ReLLU networks. We show that
convergence to a solution with the absolute minimum norm is expected when normalization
techniques such as Batch Normalization[4] (BN) or Weight Normalization[5] (WN) are used
together with Weight Decay (WD) and small initialization of the weights. In the absence
of BN+WD, good solutions for classification may still be achieved because of the implicit
bias towards small norm solutions in the GD dynamics introduced by close-to-zero initial
conditions. The main property of the minimizers that bounds their expected error is the
norm, since standard bounds show that for a fixed network architecture, the interpolating
solutions associated with a smaller value of the product of the Frobenius norms of the weight
matrices have better margin and thus better bounds on the expected classification error. The
theory yields several predictions, including the role of BN and weight decay. A main set of
predictions is about Papyan, Han and Donoho’s Neural Collapse and the conditions under
which Neural Collapse is expected to take place.

1 Introduction

1.1 Why square loss

We start from the assumption that an explanation of the ability of deep ReLLU networks to be
predictive, requires the identification of a mechanism of complexity control at work during the
training of deep networks.

In the case of exponential-type loss functions such a mechanism has been identified in the
asymptotic margin maximization effect of minimizing exponential-type loss functions [6], 2] [7].
However, this mechanism

e cannot explain the good empirical results that have been recently demostrated using the
square loss[8];

e cannot explain the empirical evidence that convergence for cross-entropy loss minimization
depends on initialization.

This puzzle motivates our focus in this paper on the square loss.

Here we assume commonly used GD-based normalization algorithms such such as BN (or
WN) together with weight decay (WD), since such mechanisms seem essential for reliably training
deep networks (and were used by [8])[9]. Crucially, our analysis depends on these assumption

1.2 Regression and classification

In our analysis of the square loss, we need to explain when and why regression works well for
classification, since the training minimizes square loss but we are interested in good performance
in classification (for simplicity we consider here binary classification). A few preliminary remarks
are helpful for understanding. Unlike the case of linear networks we expect several global zero
square loss minima corresponding to interpolating solutions (in general degenerate, see [10] and
reference therein). Although all interpolating solutions are optimal solutions of the regression
problem, they will in general have different margins and thus different expected classification
performance. In other words, zero square loss does not imply by itself neither large margin nor
good expected classification. Why and when we expect the solutions of the regression problem to
have large margin? We will show that the bias for large margin interpolating solutions depends
on weight decay and initialization of the weights close to zero. As we will define later more
formally, the function corresponding to a deep network can be written as g(z,) = pf, where
g(zy) is the output of the network for the training example x,, p is the product of the Frobenius
norms of the weight matrices of the network and f, = f(z,) is the output of the normalized
network for the input z,. Notice that if g is a zero loss solution of the regression problem, then
9(zn) = yn, Vn. This is equivalent to pf, = y, where f,, is the margin for x,. Thus the norm
p of a minimizer is inversely related to its average margin (see Appendix . In fact, for an
exact zero loss solution of the regression problem, the margin is the same for all training data
x, and it is equal to i. Notice that interpolating solutions are expected to be degenerate
for the regression problem under overparametrization for each minimum: a possibly very small
regularization is needed to guarantee convergence to the local minimum norm solution (which is
maximum margin for classification) independently of initial conditions. As we will see in the
next section, under the assumption of separability (with BN and weight decay or without), if
p is small at initialization, it will grow monotonically under GD until a critical point of the
gradient flow dynamics is reached. In other words, starting from small initialization, GD will
explore critical points with p growing from zero. Thus quasi-interpolating solutions with small pe,
(corresponding to the best margin) may be found before large p., quasi-interpolating solutions
which have worse margin (and are likely to be associated with the NTK regime). If the weight
decay parameter is large enough, there may be independence from initial conditions. Otherwise,
a small initialization is required, as in the case of linear networks, though the reason is quite
different.

We know that for overparametrized linear systems GD converges to the minimum norm solution if the weights
are initialized close to zero values.

2 The dynamics of GD in p and V;

2.1 Notation

We defind’] a deep network with L layers with the usual coordinate-wise scalar activation functions
o(z): R — R as the set of functions g(W;z) = (Wro(Wr_1---o(Wix))), where the input is
x € RY, the weights are given by the matrices W}, one per layer, with matching dimensions. We
sometime use the symbol W as a shorthand for the set of W), matrices k = 1,---, L. There are
no bias terms: the bias is instantiated in the input layer by one of the input dimensions being a
constant. The activation nonlinearity is a ReLU, given by o(z) = 4 = maz(0,z) . Furthermore,

e we define g(x) = pf(x) with p defined as the product of the Frobenius norms of the weight
matrices of the L layers of the network and f as the corresponding network with normalized
weight matrices Vi, (because the ReLU is homogeneous [7]);

e in the following we use the notation f,, meaning f(z,), that is the ouput of the normalized
network for the input x,;

e we assume ||z|| =1 implyinﬂ |f(x)| <1 at convergence;

e the following structural property of the gradient of deep ReLU networks is useful (Lemma
2.1 of [11]):
dg(W;)

ZWW;j =g(W;x); (1)
ij k

for k =1,-, L. Equation [I| can be rewritten as an inner product between Wy as vectors:

dg(W;)

(ka TM/]{;

) =g(W;z) (2)
where W}, is here the vectorized representation of the weight matrices Wy, for each of the
different layers. We use this vectorized notation in a few places, hoping it will not confuse
the reader. Notice that Equation [I] must be used with care: the W} matrix depends on x
and on the network!

e we assume that L > 2. The main reason is to avoid the case of linear networks with a
unique minimizer of the square loss;

o separability is defined as correct classification for all training data, that is y,f, > 0, Vn.
We call average separability when > yy, fr, > 0.

2For more details about basic properties, see 7.
3Because f(z) has the form of products of matrices of norm 1 (see Equation

2.2 Gradient descent

The natural approach to training deep networks for binary classification using the square loss
is to use stochastic gradient descent to find the weights W} that minimize £ = % S 2=
% ZnN(g(xn) —yn)?, with y = £1. In this note, we consider the gradient flow associated with
gradient descent.

2.3 Dynamics under normalization and weight decay

In the following we abuse the notation in order to keep it lighter in the following way. We denote
f the network with weight matrices V. The weight matrices Vi, k =1,---,L — 1 are not
normalized but are constrained during gradient descent to converge to unit norm matrices; the
last weight matrix Wy, in the network f is not normalized. We define it as W, = pVr. Thus f
here, differently from the previous section, is not the normalized network but a network that is
supposed to converge to a network with L — 1 normalized layers. We consider gradient descent
on a modified loss

L—1
[’:Z(pfn_yn)2+yz |’Vk||2 (3)
n k=1
with the constraint||V;||? = 1. In fact, the constrained dynamics will not change the initial norm
of the L — 1 layers: to ensure that ||Vj|| = 1 the initial value of the L — 1 weight matrices must
be |[Vil|=1, k=1,---,L—1[]

The key assumption in this paper is that the dynamics above with Lagrange multipliers,
captures the key normalization property of batch normalization, though not all of its details (see
Appendix [A| and discussions in [7] and also [9]). Thus we assume that for network trained with
BN, following the spirit of the analysis of [9], pr =1, Vk < L and pr, = p where L is the number
of layers. It is important to observe here that batch normalization — unlike Weight Normalization
— leads not only to normalization of the L — 1 weight matrices but also to normalization of each
row of the matrices [7] because it normalizes separately the activity of each unit ¢ and thus —
indirectly — the W; ; for each i separately. This implies that each row i in (V});; is normalized
independently and thus the whole matrix Vj is normalized (assuming the normalization of each
row is the same 1 for all rows). The equations in the main text involving V} can be read in this
way, that is restricted to each row. The normalization of each weight matrix yields, as shown in
Appendix 2.3} v = = ,.(0*f2 — pynfn)-

As we will show, the dynamical system associated with the gradient flow of the Lagrangian of
Equation [3|is “singular”, in the sense that normalization is not guaranteed at the critical points.
Regularization is needed, and in fact it is common to use in gradient descent not only batch
normalization but also weight decay. Weight decay (see Appendix consists of a regularization
term \||Wy||? added to the Lagrangian yielding

4This dynamics is equivalent to “Weight Normalization”, as proved in [7], for deep networks. This dynamics can
be written as pr = Vil Wi and Vi = pSWi with S = I — Vi V;!. This shows that if Wy, = piVi then Vi = LW

as mentioned in [9].

‘C:Z(pfn_yn)2+VZHVkH2+)‘p2' (4)
k

n

The associate gradient flow is then the following well-defined dynamical system

p= _Q[Z p(fn)2 - Z fnyn] = 22p (5)
Vi =203 (0 — 1) (Vi — g{;;» (6)

where the critical points p = 0, Vj = 0 are not singular for any arbitrarily small A > 0. For
A = 0 the zero loss critical point is pathological, since V;, = 0 even when (Viefn — g—{/l’z) # 0
implying that a un-normalized interpolating solution can satisfy the equilibrium equations. This
is expected from the constrained dynamics which by itself constrains the norm of the Vj to not
change during the iterations. Numerical simulations show that even for linear degenerate networks
convergence is independent of initial conditions only if A > 0. In particular, normalization is
then effective at peq, unlike the A = 0 case. As a side remark, SGD, as opposed to gradient flow,
may help (especially with label noise) to counter the singularity of the A = 0 case, even without
weight decay, because of the associated random fluctuations around the pathological critical
point.

Observe that for A = 0, p = 0 for zero loss minima, that is for interpolating solutions. The
converse is not true: there are critical points that correspond to local minima or saddle points.
In the following, we focus on interpolating or quasi-interpolating solutions (when A > 0).

2.3.1 Equilibrium values

The equilibrium value at pr =0 isﬂ (see Appendix [E.1))

. Zn Ynfn
P ES) "

Observe that p > 0 if p is smaller than p., and if average separability holds. Recall also that
zero loss “global” minima (in fact arbitrarily close to zero for small but positive) are expected
to exist and be degenerate [10] — in addition to other critical points.

If we assume that the loss (with the constraint ||V|| = 1) is a continuous function of the Vi,
then there will be at least one minimum of L at any fixed p, because the domain Vi, is compact.
This means that for each p there is at least a critical pointlﬂ of the gradient flow of Vj, implying
that for each critical p for which p =0, there is at least one critical point of the dynamical system
in p and V.

5 Notice that p = 0 is equivalent to Z ln fn = 0. Thus the two conditions together — p = 0 and Vi = 0 — imply
Ofn _—
dilngyr =0. _
5If Viefr = g{/: then Vi = 0 but this is not a critical point for the system p, Vj unless p = 0.

Around Vk = 0 we have

S (pf — yn>(‘§{/]’i = S (0f —) (VEfo), (8)

n n

where the terms (pf, — yn) will be in general different from zero if A > 0.

In appendix [D| we describe the interesting dynamics associated with the unnormalized case
(when py are all the same Vk, k=1,---,L). If during GD (with BN), other layers, in addition
to the last, have pj different from 1 (which happens in practice), the dynamics will show some
of the interesting properties described in appendix D} which favor small initializations to reach
solutions with greater margin. The dynamics of Equation is that the smaller p;—¢ is, the
longer it takes to p to grow (this phenomenon becomes stronger with a larger number of layers
L). Thus p is constrained by the nonlinear dynamics to be very small for a transient phase T' of
GD iterations (7" is longer with more layers and longer with smaller initialization).

Appendix [E] describes a few additional properties of the dynamics of the normalized weights.

The conclusions of this analysis can be summarized in

Observation 1 Assuming average separability, and gradient flow starting from p = € with small

Zn ynfn . .
7/\+Zn R In the limit

A =0, the minimum of the square loss approaches zero, corresponding to exact interpolation of
all the training data (we assume that local minima are avoided by using SGD).

€ > 0, p grows monotonically until a minimum is reached at which peq =

and

Observation 2 Minimizers with small pey correspond to large average margin Y yYnfn. In
particular, suppose that the gradient flow converges to a peq and V,fq which correspond to zero
square loss. Among such minimizers the one with the smallest peq (typically found first, even
for A =0, during the GD dynamics when p increases from p =0), corresponds to the (absolute)
minimum norm — and maximum margin — solutions.

In general, the critical points of the V}, for the same p., corresponding to minima of the loss
are typically degenerate (see references in [12]) with dimensionality W — N, where W is the
number of weights in the networkﬂ All of them will correspond to the same norm and all will
have the same margin for all of the training points. The dynamic leading to pe, and V' requires
an analysis not just of gradient flow but of SGD and of the associated Fokker-Planck equation.

3 Dynamics

Consider a minimum of GD for which the square loss is close to zero and Vj, = 0. Clearly critical
points of p cannot exist if p is too smal]ﬂ Since usually the maximum output of a multilayer

"In addition there are local minima and other critical points.
8 p > 1 for a critical point to exist because the critical point with smallest possible p is for p = 1, fnyn = 1.

6

network is << 1, the first critical point for increasing p will be when p becomes large enough to
allow the following equation to have solutions

Zynfn:p(A"’_ng) (9)

If gradient flow starts from very small p and there is average separability, p increases
monotonically until such a minimum is foundﬂThis analysis is for gradient flow. A satisfactory
theory requires an analysis of gradient descent along the lines of [9]. If p is large, then p < 0 and
p will decrease until a minimum is found.

For large p and very small or zero A, we expect several solutions under Gﬂ The existence
of several solutions is related to arguments showing the existence of NTK-based solutions:
intuitively the last layer is enough in an extreme case — if the last layer before the linear classifier
is overparametrized wrt training data — to provide solutions for any set of random weights in the
previous layers (for large p and small f;). Furthermore the intermediate layer do not need to
change much under GD in the iterations immediately after initialization. The emerging picture
is a landscape in which there are no zero-loss minima for p < pmi, (which, in practice, means
Pmin >> 1). With increasing p from p = 0 there will be zero square-loss degenerate (see [10])
minima with the minimizer representing an interpolating (for A = 0) or almost interpolating
solution (for A > O)E We expect, however, that for A > 0 there will be a bias towards the
minimum p., within the local degenerate minimum. Under certain conditions all the global
minima — associated to interpolating solutions — will be connected within a unique, large valley
parametrized. The argument is based on Theorem 5.1 of [I3]:if the first layer of the network has
at least 2N neurons, where N is the number of training data and if the number of neurons in
each subsequent layer decreases then every sublevel set of the loss is connected.. In particular, this
implies that zero-square-loss minima with different p are connected. A connected single valley of
zero loss does not however guarantee that SGD with WD will converge to the minimum norm
global minimum independently of initial conditions. The reason is that the connected valley will
in general twist in the space of parameters in such a way that following it does not corresponf to
monotonically increasing or decreasing p.

All these observations are also supported by our numerical experiments. Figure [1] [2] B}
and [5] show the case of gradient descent with batch normalization and weight decay, which
corresponds to a well-posed dynamical system for gradient flow; the other figures show the same
networks and data with BN without WD and without both BN and WD. As predicted by the
analysis, the case of BN+WD is the most well-behaved, whereas the others strongly depend on
initial conditions.

9We disregard local minima because they do not appear to be a problem for SGD and because it is always
possible to check the training loss and restart GD if necessary.

107t is interesting to recall [I0] that for SGD — unlike GD — the algorithm will stop only when £, =0 Vn, which
is the global minimum and corresponds to perfect interpolation. For the other critical points for which GD will
stop, SGD will never stop but may fluctuate around the critical point.

HNotice that the equilibrium value of p is a measure of “sparsity”: small p corresponds to f; being close to
either 1 or zero (p is in the order of f%)

0 500 1000 1500 2000 2500
Iteration

Figure 1: ConvNet with Batch Normalization and Weight Decay Binary classification
on two classes from CIFAR-10, trained with MSE loss. The model is a very simple network
with 3 layers of convolutional Layers with number of channels being 32, 64 and 128. The last
layer is a fully-connected classifier layer. ReL U monlinearity is used. Batch normalization is
used with learnable “affine” shifting and scaling parameters turned off (since they can always be
learned by the next layer). The weight matrices of all layers are initialized with zero-mean normal
distribution, scaled by a constant such that the Frobenius norm of each matriz is 5. We use weight
decay of 0.01. We run SGD with batch size 128, constant learning rate 0.1 and momentum 0.9
for 1000 epochs. No data augmentation. FEvery input to the network is scaled such that it has
norm 1.

4 Generalization in Deep Networks

In this section we prove formally that p, which is inversely related to the margin, as we discussed,
indeed controls a bound on the expected error. We use classical bounds that lead (see Appendix
to the following theorem

Observation 3 With probability 1 — §

L(f) < c1pRn(F) + c2€(N, 6) (10)

where c1,co are constants that reflect the Lipschitz constant of the loss function (for the square
loss this requires a bound on f(x)) and the architecture of the network. The Rademacher average
Ry (F) depends on the normalized network architecture and N (it is independent of the data
essentially by considering the worst case). Thus for the same Radamacher complezity, the upper
bound for the expected error of the minimizer is smaller for smaller p.

There exist tighter bounds that replace the Rademacher term with estimates that depend on
different norms on the weights such as the “path-norm”. An interesting case is in [I47]. These
finer bounds may explain the empirical observation that in the absence of weigh decay the test
error of some solution is slightly better than their norm predicts (these cases would depend on
different global minima and different sets of weights). The bound supports proves the conjecture
in [I5] that for deep networks, as for kernel machines, minimum norm interpolating solutions are
the most stable.

8

— init. 0.1

0 100 200 300
Iteration
60

40 1

20

— init. 1

0 100 200 300
Iteration

120 A
100 A
80 -
60 -
40 A

20

— init. 5

0 100 200 300
Iteration

80

60

P40 4

20 A

Rho from All Layers

— init. 0.1

1254

100 4

75 A

50 A

25 1

0 1000 2000

Iteration

— init. 1

150
125
100

P 75

50

25 A

1000 2000
Iteration

— init. 5

0 1000 2000
Iteration

150 4

125 A

100 A

p 7541
50+

251

— init. 0.1

150 1

100 4

50

250 500 750 1000
Epoch

— init. 1

150 41

100 A

50 41

250 500 750 1000
Epoch

— init. 5

250 500 750 1000
Epoch

Figure 2: ConvNet with Batch Normalization and Weight Decay Dynamics of p from
experiments in Figure [l First row: small initialization (0.1). Second row: medium initialization
(1). Third row: large initialization (5). A dashed rectangle denotes the previous subplot’s domain

and range in the new subplot.

0.40 - 0.40 4 0.10 7 11
— init. 0.1 — init. 0.1 i — init. 0.1
250000 4 0.35 4 0.35 4 1
0.081{:
200000 0-301 0-301 :
0.25 4 0.25 4 0.064 1
£,150000 - f 20 fno.20 1 fn :
100000 0.15 1 0.15 1 0.044
0.10 4 0.10 4
50000 0.02 A
0.05 4 0.05 4 .
o1 . : — 0.00 1+ : : : 0.00 . ; 0.00 . : : .
0 10 20 30 0 100 200 300 0 1000 2000 0 250 500 750 1000
Iteration Iteration Iteration Epoch
0.40 4 0.40 4 0.10 A
1204 0.35 0.35 — init. 1 — init. 1
0.08
100 4 0.30 4 0.30 4
80 1 0.25 4 0.25 4 0.06 4
fa fn | fa | fn
604 0.20 0.20
0.15 1 0.15 1 0.044
40 4
0.10 4 0.10 4 0.02
201 0.05 1 0.05 1
04 . T : 0.00 : : . 0.00 ; ; 0.00 T : T :
0 10 20 30 0 100 200 300 0 1000 2000 0 250 500 750 1000
Iteration Iteration Iteration Epoch
0.40 4 0.40 4 0.10 A
— init. 5 — init. 5 — init. 5
0.74 0.35 0.35
0.08
0.6 1 0.30 4 0.30 4
0.5 1 0.25 4 0.25 4 0.06
fro.4 4 fn0.20 fro.20 fn
0.34 0.15 4 0.15 4 0.04 A
0.2 0.10 0.10 4
0.02 A
0.1 0.05 A 0.05 4
0.0 & T T T 0.00 7 i 7 0.00 : T 0.00 T T T T
0 10 20 30 0 100 200 300 0 1000 2000 0 250 500 750 1000
Iteration Iteration Iteration Epoch

Figure 3: ConvNet with Batch Normalization and Weight Decay Dynamics of the average
of |fn| from experiments in Figure[ll First row: small initialization (0.1). Second row: medium
ingtialization (1). Third row: large initialization (5). A dashed rectangle denotes the previous
subplot’s domain and range in the new subplot.

10

40 A
20 1
Syafa
7 Ip |
é=“|
1
i
1
1
— init. 0.1 | — init. 0.1
1
—20 T T T T T 0.8 -+ T T T T T
0 500 1000 1500 2000 2500 0 200 400 600 800 1000
Iteration Epoch
1.5~
1.0 + -
2Ynfa 2yafa
Ip
21 21 1.0 4
0.5 1
d
|
i
. 1 i . 1
— init. 1 ! — init. 1
1
1
0.0 T T T T T 0.8 T T T T T
0 500 1000 1500 2000 2500 0 200 400 600 800 1000
Iteration Epoch
1.5~
2Ynfn yafa
21 0.5 1 21
0.0 i
1
. . ' . .
— init. 5 ; — init. 5
1
—-0.5 = T T T T T 0.8 —+ T T T T T
0 500 1000 1500 2000 2500 0 200 400 600 800 1000
Iteration Epoch
Zynfn

Figure 4: ConvNet with Batch Normalization and Weight Decay Ratio of S and p.

First row: small initialization (0.1). Second row: medium initialization (1). Third row: large
initialization (5).

11

= init. 0.1 init. 1 == init. 5 i
0.016 0.0150 I
0.0150 0012 i
0.014 !
0.0125 !
0.0125 |
0.010 i
0.012 !
00100 0.0100 ’
7
0.008 0.010 y
£ £ < I3 r'/-
< < < < Py
& 5 S =3 —
5 0.0075 5 5 g 0.0075 pos
= = = 0.008 = P
0.006 Pl
T
0.0050 0.006 000501~ s
/
0.004 [
i
0.0025 0.004 0.0025 17
i
I 0.002 |
H 0.002 H
000001 -0k 04 0.0000 {1
H init. 1 H
i —- init. 5 1
0.000 0.000
) 2000 4000 6000 8000 10000) 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000

CIFAR Binary Classification Samples

CIFAR Binary Classification Samples

Figure 5: ConvNet with Batch Normalization

CIFAR Binary Classification Samples

CIFAR Binary Classification Samples

and Weight Decay Margin of all training

100 100.00 98
(—— Init p; 0.1 — Initp; 0.1
99.75 0.0009 Init p; 5 Init py 5
% 0.0008 9%
99.50
0.0007
£ 80 g 992 4 0.0006 Zoa
H g § g
g g H
< < 99.00 2 0.0005 8
@ = £ <
£ £ s 7
g 7 % o875 £ 0.0004 g 92
= =
0.0003
98.50
60 0.0002 90
—— Initp, 0.1 98.25 —e— Initp; 0.1 0.0001 ‘
Init pyc 5 Init py 5
50— 98.00 0.0000 88—+
4 500 1000 1500 2000 2500 o 200 400 600 800 1000 4 200 400 600 800 1000 4 200 400 600 800 1000
Iteration Epoch Epoch Epoch

Figure 6: ConvNet with Batch Normalization but no Weight Decay Binary classification
on two classes from CIFAR-10, trained with MSE loss. The model is a very simple network
with 4 layers of convolutions. ReLU nonlinearity is used. Batch normalization is used without
parameters (affine=False in PyTorch). The weight matrices of all layers are initialized with
zero-mean normal distribution, scaled by a constant such that the Frobenius norm of each matrix
is either 0.1 or 5. We run SGD with batch size 128, constant learning rate 0.01 and momentum
0.9 for 1000 epochs. No data augmentation. Every input to the network is scaled such that it has
norm 1. This is a single run but it is typical for the parameter values we used.

12

10 A

1201

100

80

60

40 A

20 A

Rho from All Layers

60 A
70 A
50 A N
6011
401 504
0304 04011
301
20 A |
2041
10 1
i 10 4
i
— Init e 0.1 o L. i — Initp 0.1 o — Initp 0.1
0 50 100 150 200 250 300 0 500 1000 1500 2000 2500 0 200 400 600 800 1000
Iteration Iteration Epoch
:
|
1204 ! \
100
80 A
P
60 -
40 A i
20 A |
— Initp 5 N — Initpx 5 — Initp 5
0 50 100 150 200 250 300 0 500 1000 1500 2000 2500 0 200 400 600 800 1000
Iteration Iteration Epoch

Figure 7: ConvNet with Batch Normalization but no Weight Decay. Dynamics of p from
experiments in Figure @ Top row: small initialization (0.1). Bottom row: large initialization (5).
The plot starts with p(0) = 0 despite an initialization of pr, = 0 because the the scaling factor of
BN starts from 0. A dashed rectangle denotes the previous subplot’s domain and range in the

new subplot.

13

0.0200

0.0175

0.0150
éoous
=

0.0100

0.0075

0.0050

— Initpy 0.1 — Initpy 0.1 Init i, 5
Init i 5

0.018
0.020

0.016
0.018

0.014

0.012

rgi

2
£ 0016 g

0.010

0.014 0.008

0.006

0.012

0.004

0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
CIFAR Binary Classification Samples CIFAR Binary Classification Samples CIFAR Binary Classification Samples

Figure 8: ConvNet with Batch Normalization but no Weight Decay. Margin of all
training samples (see previous figures). If the solution were to correspond to exactly zero square

loss,

5

the margin distribution would be an horizontal line.

Predictions

e In a recent paper Papyan, Han and Donoho[16] described four empirical properties of the

terminal phase of training (TPT) deep networks, using the cross-entropy loss function. TPT
begins at the epoch where training error first vanishes. During TPT, the training error stays
effectively zero, while training loss is pushed toward zero. Direct empirical measurements
expose an inductive bias they call neural collapse (NC), involving four interconnected
phenomena. (NC1) Cross-example within-class variability of last-layer training activations
collapses to zero, as the individual activations themselves collapse to their class means.
(NC2) The class means collapse to the vertices of a simplex equiangular tight frame (ETF).
(NC3) Up to rescaling, the last-layer classifiers collapse to the class means or in other words,
to the simplex ETF (i.e., to a self-dual configuration). (NC4) For a given activation, the
classifier’s decision collapses to simply choosing whichever class has the closest train class
mean (i.e., the nearest class center [NCC] decision rule).

We show here |G| that these properties of the Neural Collapse[16] seem to be predicted by the
theory of this paper in the case of binary classification for the global (that is, close-to-zero
square-loss) minima, irrespectively of the value of p.,. We recall that the basic assumptions
of the analysis are Batch Normalization and Weight Decay.

Neural collapse in the binary classification case. In a network with L layers the last layer
activations for an input x; . where c is the class — here we consider just two classes ¢ = +1

14

400

Epoch
600
800
0.009 0.011 0.013 0.015 0.017 0.019 LaSt EPOCh
Average 0.01392
Init. 0.1
200
400
o EpoOch
800
Last Epoch
0.002 0.006 0.010 0.014 0.018 0.022 Average 001 208

Init. 5

Figure 9: ConvNet with Batch Normalization but no Weight Decay: Histogram of |fy|
over time. Top figure: initial pr, = 0.1. Bottom figure: initial pp = 5.

15

or ¢ = —1 — are called h; . by [I6]. The key observation is that h; . = 81;(‘%6). Then since

Vife = % at convergence, it follows that hT(xi,c) = Vi f. at convergence. Observe now
that

— VL fc does not depend on 7 implying that the standard deviation of h; . wrt i converges
to zero. This is the main part of NC1;

— in the binary case hi1 — VLT and h_1 — —VLT. Thus pu; = VT and pug = —V7T. This
is a special case of NC2 (here we do not use hot vectors);

— since h(z;.) = VI f. and f. is a number, at convergence h is proportional to V;,
which is the gist of NC3;

— The result of [I7] and NC4 hold. The same is true for our theory (in the previous
sections), since it implies the result of [17].

In the Appendix we extend these predictions to the multiclass case. We also show that they
hold also in the case of crossentropy, used in [I6]. For the exponential loss, in particular,
SGD is required in order to guarantee NC1 and small minibatch sizes are better.

At a close to zero loss critical point of the flow, Equations [36| become (see Appendix
Vv, f(z;) = Vi f(z;) with z; in the training set, which are powerful constraints on the
weight matrices to which training converges. A specific dependence of the matrix at each
layer on matrices at the other layers is thus required. In particular, there are specific
relations for each layer matrix Vj of the type, explained in the Appendix,

Vif = VeDr—1(2)Vi—1 -+ Vis1Dy(a)]" Dp—1(2) Vi1 Dy—2(2) - - - D1(2) Viz, (11)

where the D matrices are diagonal with components either 0 or 1, depending on whether
the corresponding RELU unit is on or off.

As described in the Appendix for linear networks, a class of possible solutions to these
constraint equations are projection matrices; another one are orthogonal matrices and more
generally orthogonal Stiefel matrices on the sphere. These are sufficient but not necessary
conditions to satisfy the constraint equations. The current analysis (in Appendix [I)) of
the constraint equation is quite limited since it holds only for deep linear networks: a full
analysis is still missing. Interestingly, randomly initialized weight matrices (an extreme
case of the NTK regime) are approximately orthogonal.

6 Summary

The main results of the paper analysis can be summarized in the following

Proposition 1 If the gradient flow with normalization and weight decay converges to an inter-
polating solution with near-zero square loss (for A > 0), the following properties hold:

16

6.1

. For a fixed architecture the global minima with the smallest p are the global minimum norm

solutions and have the best margin and the best bound on expected error.

Conditions that favour convergence to minimum norm solutions are weight decay \ (with
BN), label noise and small initialization (small p). Weight decay avoids degeneracy in
the solution (though the solution may still depend on initial conditions even if the global
minima are connected).

If there is sufficient overparametrization (width of Vi > 2N and decreasing width of each
layer wrt previous layer) all zero-loss solutions are connected implying that SGD with X\ > 0
is likely to converge to the minimum norm solutions independently of initial conditions.

. At the global minima the margins for all training points are equal.

The condition %‘Zj) = Vi f(z;) which holds at the critical points of the SGD dynamics that
are global minima, predicts all properties of the Neural Collapse[I6]; it also represents a
constraint on the set of weight matrices at convergence.

Remarks

We assume throughout overparametrization, meaning that there is enough overparametriza-
tion to allow for “benign” interpolation of the training data. This requires more parameters
(weights) than N — the number of training data — and in some setting significantly more (see
Theorem 5.1 of [I3] and earlier comment about it). It also requires that the training points
never coincide because this would make interpolation impossible. One expects that if the
minimum distance between points is too small, interpolation may become impossible with
high probability. A rough bound on the notion of “too close” is provided by the sampling
theorem: if two pints are closer than the Shannon samling distance for a fnnction with a
cutoff frequency of (2%) then the samples will be dependent and again make interpolation
impossible (in the presence of noise). Following this argument interpolation is possible if
the dimensionality of the input is high enough wrt to N. For convolutional networks the
dimensionality is ~ (2%)" where d is the dimensionality of the kernel (for a 3 x 3 kernel with
3 color chanels d ~ 30) and T is the sampling distance in the image (or of the “stride”).

Suppose we control p; independently of V and of equation can we find p(t) schedules
leading more reliably to good solutions independently of initial conditions?

The role of the Lagrange multiplier term v}, ||Vi||?> in Equation [3 is different from a
standard regularization term because v, determined by the constraint ||Vj|| = 1 can be
positive or negative, depending on the sign of the error v = — 3, (p®f2 — pynfn). Thus
the v term acts as a regularizer when the norm of V is larger than 1 but has the opposite
effect for ||Vi|| < 1, thus constraing each Vi to the unit sphere. For the exponential loss

17

the situation is different and v in v, ||Vi||? acts as a positive regularization parameter,
albeit a vanishing one (for t — c0).

e For the square loss, convergence of the gradient flow to local minimum norm solutions
requires BN or WN and WD, unlike the case of linear networks. For the exponential loss,
BN is not needed since minimization of the exponential loss maximizes the margin and
minimizes the norm without BN. Thus under the exponential loss, we expect a margin
maximization effect for ¢ — oo, as shown in [3], independently of intial conditions. Deep nets
under the square loss are more likely to overfit at long times than under exponential-type
loss functions (unless weight decay is used). As a consequence, early stopping is more likely
to be effective for the square loss than for exponential-type loss functions. Empirically,
it seems that square loss reaches solutions with good test error in multiclass CIFAR10
faster than cross-entropy. Continuing GD, however, sometime yields overfitting for the
square loss (and worse test error) but not for cross-entropy. This is interesting because it
validates the asymptotic complexity control we described in [18]. It also suggests that in
the experiments of [§], early stopping may play a role to obtain results with the square
loss case that are as good or better than cross-entropy. We conjecture that the overfitting
phenomenon is related to the singular nature of the global critical point when the weight
decay A is zero or too small (see Equations [5| and @

o If there exist several almost-interpolating solutions with the same norm pc,, they also have
the same margin for each of the training data. Though they have the same norm and the
same margin on each of the data point, they may have different ranks of the weight matrices
or of the rank of the local Jacobian g{}; (at the minimum W*). Notice that in deep linear
networks the GD dynamics seems to bias the solution towards small rank solutions, since
large eigenvalues converge much faster the small ones [19]. It in unclear whether the rank

has a role in our analysis of generalization (it was considered in the first versions of this
paper).

e Small initialization ensures that p grows for small values thus exploring first large margin
minima — assuming that average separability is reached early, during the first iterations
of GD. Why does GD have difficulties in converging in the absence of BN, especially for
very deep networks? At the moment, the best answer is that good tuning of the learning
rate is important and BN together with weight decay was shown to provide a remarkable
autotuning [9]. A closely related observation is

e The normalization Equation [3] is a precise model of WN. Normalization of the weight
matrices Vj is also an effect of BN. However, BN is also normalizing each row of each Vj
matriz, as we mentioned earlier@

12The normalization may change during training between each training example because of the role of the D
matrices, effectively switching on and off some weights in the network, depending on z,, and on whether BN is
before or after the RELU nonlinearity (as pointed out by A. Banbuski).

18

e Are there any implications of the theory sketched here for mechanisms of learning in
cortex? Somewhat intriguingly, some form of normalization, often described as a balance of
excitation and inhibition, has long been thought to be a key function of intracortical circuits
in cortical areas. One of the first deep models of visual cortex models, HMAx, explored
the biological plausibility of specific normalization circuits with spiking and non-spiking
neurons. It is also interesting to note that the Oja rule describing synaptic plasticity in
terms of changes to the synaptic weight is the Hebb rule plus a normalization term that
corresponds to a Lagrange multiplier.

e The generalization bounds we obtain do NOT necessarily require A > 0 but robust
convergence to large margins is helped by A > 0 even with very small A\. The main effect of
A > 0 together with very large overparametrization is to make convergence independent of
initial conditions.

e The main problems left open by this paper are:

— The analysis is so far restricted to gradient flow. It should be exteded to gradient
descent.

— The behavior of gradient descent around the global minima should be analyzed in the
limit for A — 0. Equation [f] contains two terms, one reflecting the normalization and
the other the regression error. Zero regression error implies that normalization fails at
the critical point for A = 0. It is remarkable that for A = 0 or even more surprisingly
for the case of no BN and no WD, the dynamical system still yields good results,
provided initialization is small. The case of BN4+WD is the only one which seems
rather independent of initial conditions in our experiments.

— In this context, an extension of the analysis to SGD may also be critical for providing
a satisfactory analysis of convergence.

Acknowledgments We are grateful to Shai Shalev-Schwartz, Andrzej Banbuski, Arturo
Desza, Akshay Rangamani, Santosh Vempala, David Donoho, Vardan Papyan, X.Y. Han, Silvia
Villa and especially to Eran Malach for very useful comments. This material is based upon work
supported by the Center for Minds, Brains and Machines (CBMM), funded by NSF STC award
CCF-1231216, and part by C-BRIC, one of six centers in JUMP, a Semiconductor Research
Corporation (SRC) program sponsored by DARPA.

19

References

1]

[14]

[15]

Vidya Muthukumar, Adhyyan Narang, Vignesh Subramanian, Mikhail Belkin, Daniel Hsu, and Anant
Sahai. Classification vs regression in overparameterized regimes: Does the loss function matter?
arXiv e-prints, page arXiv:2005.08054, May 2020.

Kaifeng Lyu and Jian Li. Gradient descent maximizes the margin of homogeneous neural networks.
CoRR, abs/1906.05890, 2019.

Tomaso Poggio, Andrzej Banburski, and Qianli Liao. Theoretical issues in deep networks. PNAS,
2020.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Tim Salimans and Diederik P. Kingm. Weight normalization: A simple reparameterization to
accelerate training of deep neural networks. Advances in Neural Information Processing Systems,
2016.

Mor Shpigel Nacson, Suriya Gunasekar, Jason D. Lee, Nathan Srebro, and Daniel Soudry. Lexico-
graphic and Depth-Sensitive Margins in Homogeneous and Non-Homogeneous Deep Models. arXiv
e-prints, page arXiv:1905.07325, May 2019.

A. Banburski, Q. Liao, B. Miranda, T. Poggio, L. Rosasco, B. Liang, and J. Hidary. Theory of deep
learning III: Dynamics and generalization in deep networks. CBMM Memo No. 090, 2019.

Like Hui and Mikhail Belkin. Evaluation of neural architectures trained with square loss vs cross-
entropy in classification tasks, 2020.

Sanjeev Arora, Zhiyuan Li, and Kaifeng Lyu. Theoretical analysis of auto rate-tuning by batch
normalization. CoRR, abs/1812.03981, 2018.

T. Poggio and Y. Cooper. Loss landscape: Sgd has a better view. CBMM Memo 107, 2020.

Tengyuan Liang, Tomaso Poggio, Alexander Rakhlin, and James Stokes. Fisher-rao metric, geometry,
and complexity of neural networks. CoRR, abs/1711.01530, 2017.

T. Poggio and Y. Cooper. Loss landscape: Sgd can have a better view than gd. CBMM memo 107,
2020.

Quynh Nguyen. On connected sublevel sets in deep learning. In Kamalika Chaudhuri and Ruslan
Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research, pages 4790-4799. PMLR, 09-15 Jun 2019.

P. Bartlett, D. J. Foster, and M. Telgarsky. Spectrally-normalized margin bounds for neural networks.
ArXiv e-prints, June 2017.

Tomaso Poggio. Stable foundations for learning. Center for Brains, Minds and Machines (CBMM)
Memo No. 103, 2020.

20

100.00

99.75 0.0009
0.0008
99.50
0.0007
g

g 992 4 0.0006
5 g

< 99.00 £ 0.0005
2 £

< £ 0.0004
s S

g 9875

0.0003
98.50
0.0002

—— Initp; 5
Init py 15
o~ Init py 30

—— Initpe 5
Init pi. 15
—e Init p; 30

98.25 0.0001

0

98.00 0.0000
0

500 1000 1500 2000 2500

Iteration Epoct

800 1000

Figure 10: ConvNet, no Batch Normalization, no Weight Decay. Binary classification
on two classes from CIFAR-10, trained with MSE loss. The model is a very simple network

with

4 layers of fully-connected Layers. The ReLU nonlinearity is used. The weight matrices of

all layers are initialized with zero-mean normal distribution, scaled by a constant such that the

Frob

enius norm of each matriz is either 5, 15 or 30. We run SGD with batch size 128, constant

learning rate 0.1 and momentum 0.9 for 1000 epochs.. No data augmentation. Every input to
the network is scaled such that it has Frobenius norm 1.

[16]

(17]

(18]

[19]

Vardan Papyan, X. Y. Han, and David L. Donoho. Prevalence of neural collapse during the terminal
phase of deep learning training. Proceedings of the National Academy of Sciences, 117(40):24652-24663,
2020.

D. Soudry, E. Hoffer, and N. Srebro. The Implicit Bias of Gradient Descent on Separable Data.
ArXiv e-prints, October 2017.

T. Poggio, Q. Liao, and A. Banburski. Complexity control by gradient descent in deep networks.
Nature Communication, 2020.

Daniel Gissin, Shai Shalev-Shwartz, and Amit Daniely. The Implicit Bias of Depth: How Incremental
Learning Drives Generalization. arXiv e-prints, page arXiv:1909.12051, September 2019.

Jeff Z. HaoChen, Colin Wei, Jason D. Lee, and Tengyu Ma. Shape matters: Understanding the
implicit bias of the noise covariance, 2020.

Paulo Jorge S. G. Ferreira. The existence and uniqueness of the minimum norm solution to certain
linear and nonlinear problems. Signal Processing, 55:137-139, 1996.

0. Bousquet, S. Boucheron, and G. Lugosi. Introduction to statistical learning theory. pages 169207,
2003.

Daniel Kunin, Jonathan M. Bloom, Aleksandrina Goeva, and Cotton Seed. Loss landscapes of
regularized linear autoencoders. CoRR, abs/1901.08168, 2019.

Kui Jia, Shuai Li, Yuxin Wen, Tongliang Liu, and Dacheng Tao. Orthogonal deep neural networks.
CoRR, abs/1905.05929, 2019.

21

800
775 1
750 A
725 A
P
700 A
675 1
650 -

625

— Initpx 5

51200 -

51100 A

51000 A

50900

50800 -

50700 A

50600 -

100

200 300
Iteration

—— Init px 15

810000

800000 -

P790000 -

780000 -

770000 A

o

100

200 300
Iteration

—— Init px 30

100

200 300
Iteration

14

1400
1300
1200
1100

1000

900 1
800 1
700 1

600 -

— Initpx 5

53000 -
52500 -
P52000
51500 -
51000 -

50500 -

500 1000 1500 2000 2500
Iteration

—— Init px 15

810000 1 §

800000 -

790000 -

780000 A

770000 -

760000 -

500 1000 1500 2000 2500
Iteration

—— Init px 30

\\\\\\\‘““‘--—-—___

0

500 1000 1500 2000 2500
Iteration

2000 A

1800 A

1600

p1400 17
1200

1000 1!

800 -

600 -

— Initpx 5

53500 1
53000
2 44
52500
52000

51500 -

51000 -

200 400 600 800 1000
Epoch

—— Init px 15

780000 1 |

770000 -

760000 -

750000 -

740000 -

730000

200 400 600 800 1000
Epoch

—— Init px 30

o4

200 400 600 800 1000
Epoch

Figure 11: ConvNet, no Batch Normalization, no Weight Decay. Dynamics of p from
experiments in Figure . First row: small initialization (5). Second row: large initialization
(15). Third row: extra large initialization (30). A dashed rectangle denotes the previous subplot’s

domain and range in the new subplot. More details to be added.

22

0.0000200
0.000505 i -
oooOs Init i 5 Init pi 15 —- Initpe 30 i
0.00000142 i
I
|
0.000500 H
0.0004 0.0000198 0.00000140 |
[
|
1
0.000495 0.00000138 i
0.0003 0.0000196 7
c — Initp, 5 < 3 £ e
) & 5 & ISR
£ Init p; 15 H g H T
—- Init py 30 et
o 0.000490 0000001361 -
0.0002 /
0.0000194 i
0.00000134 1}
0.000485 !
0.0001 |
|
00000192 000000132 {- |
I
0.000480 !
0.0000 |
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000

CIFAR Binary Classification Samples CIFAR Binary Classification Samples CIFAR Binary Classification Samples CIFAR Binary Classification Samples

Figure 12: ConvNet, no Batch Normalization, no Weight Decay. Margin of all training
samples

A Normalization during Gradient Descent

A.1 Weight Normalization

For each layer (for simplicity of notation and consistency with the original weight normalization
paper), weight normalization [5] defines v and ¢ in terms of w = g|2—|. The dynamics on g and v

is induced by the gradient dynamics of w as follows (assuming w = —g—fu
T
v
g = 7w (12)
]|
and
. g .
0= —"—Sw (13)
||l

T

with S =1 — ‘”;’T
We claim that this is the same dynamics obtained from tangent gradient for p = 2. In fact,
compute the flows in p,v from w = pv as

Ow 0L T
. _ ; 14
P=pow VY (14)
and

0= Spw (15)

Clearly the dynamics of this algorithm is the same as standard weight normalization if
[|v]l2 = 1, because then Equations [12| and [13| become identical to Equations [14] and [15| with g
corresponding to p. We now observe, multiplying Equation by v’ that vT9 = 0 because
vT'S = 0, implying that ||v||? is constant in time. Thus if ||v|| = 1 at initialization, it will not

23

change (at least in the noiseless case). Thus the dynamics of Equations and |15 is the same
dynamics as Equations[17] and It is also easy to see that the dynamics above is not equivalent
to the standard dynamics on the w (see [7].

A.2 Batch Normalization

Batch normalization [4] for unit ¢ in the network normalizes the input vector of activities to unit
i — that is it normalizes X/ = =2 Wi xj, where x; are the activities of the previous layer. Then
it sets the activity to be

) .\ XJ —
Yi=q R+ 8=1"—~LE 4 8,
\/O’%-i-é

where v, 8 are learned subsequently in the optimization and
1 & S)
n=1 n=1

Note that both pup and 0% are vectors, so the division by \/J% + € has to be understood as a
point-wise Hadamard product ®(c% + e)*l/ 2. The gradient is taken wrt the new activations
defined by the transformation above.

Unlike Weight Normalization, the Batch Normalization equations do not include an explicit
computation of the partial derivatives of L with respect to the new variables in terms of the
standard gradient g—i. The reason is that Batch Normalization works on an augmented network:
a BN module is added to the network and partial derivatives of L with respect to the new
variables are directly computed on its output. Thus the BN algorithm uses only the derivative of
L wrt the old variables as a function of the derivatives of L wrt new variables in order to update
the parameters below the BN module by applying the chain rule. Thus we have to estimate what
BN implies about the partial derivatives of L with the respect to the new variables as a function
of the standard gradient g—i’}

To see the nature of the dynamics implied by batch normalization we simplify the original
Equations (in the Algorlthm 1 box in [4]). Neglecting pup and 5 and v, we consider the
core transformation as X = % which, assuming fixed inputs, becomes X = x| X| which is
mathemat1cally identical with the transfomation considered in [7]. In a similar way the dynamics

of w = (T induces the following dynamics on X:

where & = V,L. We consider X € RV*P_ In the D = 1 case, we get
X (2 —-1/2 L sor

24

In the general D-dimensional vector case, this generalizes to

0X

1 . A
1/2 | T
Ee = (0% +e€) NX OX+I|.

Notice that I — X X7 = S. Since x = W Zinput this shows that batch normalization is closely
related to gradient descent algorithms with unit Lo norm constraint of the tangent gradient type.
Because of the simplifications we made, there are other differences between BN and weight
normalization, some of which are described in the remarks below.

Remarks

1. Batch normalization, does not control directly the norms of Wy, Wo, .-+ Wx as WN does.
Instead it controls the norms

[|z[l; [le(Whz)l]; llo(Wao (Wiz))]], - - (17)

2. In the multilayer case, BN controls separately the norms ||V;|| of the weights into unit 4,
instead of controlling the overall Frobenius norm of the matrix of weights as WN does. Of
course control of the ||V;|| implies control of ||V]| since ||V||? = ¥, ||Vi]|?.

B Gradient flow for p and V;

Gradient descent on £ = (3, 92 — 23, yngn + N) (using g, = g(zn)) gives

8gn
__2 1
Z ") B (18)
that is
= = — n 7"L 1
e =", Nzn:g Wy, NZ (19)

We now derive the dynamics of the norm and of the normalized weights. We define g(x) =
pf(z). p is the product of the Frobenius norms of the weight matrices of the L layers in the
network. f is the corresponding network with normalized weight matrices (because the ReLU
is homogeneous [7]). In the following we use the notation f,, meaning f(z,). We also assume
||z|| = 1 implying ||f(z)|| < 1 at convergence;

B.1 Dynamics under normalization

Gradient flow on £ = 3", (pfn —yn)? +v Xk ||Vi| |2 + A\p? with ||V4||? = 1 is completely equivalent
(for A = 0) to “Weight Normalization” [7] for deep networks.
Assuming that pp =1, Vk < L and pr = p, gradient flow on L wrt p gives,

25

p= _2Z£nfn —2X\p (20)

Gradient flow on L wrt Vj gives

Vk:——:—zz ofn — fk—2yvk. (21)

Because of the constraint imposed via Lagrange multipliers ||V;||> = 1, VkTVk = 0, which gives

V=- En(p2f7% - pynfn)'

In summary, gradient flow on L wrt p and Vj gives

Z /0 fn Z fnyn 2 p= -2 Zgnfn = 2Xp. (22)
where ¢, = pfy, — y, and
9 fn _ 3 _Ofn
Ic - 22 pfn yn P oV,) + 2Vkpfn<pfn yn)] =2p Z[(pfn yn)(kan aVk)] (23)

Without BN and without WD 222:V) _ ﬂ"”g}ﬁ:); with BN but without weight decay this

9gn (W) 9fn(V) o a (kaV) Afn(V)
gn _ n In _ n
becomes oW, = P av, Vk < L and oW, = oV, -

This dynamics — where there is a “vanishing” Lagragge multiplier v — can also be written as
Pk = VkTWk and Vj, = pSWk with S =1 — VkaT. This shows that if Wi = pi Vi then Vi = pika
as mentioned in [9].

Notice that p = 0 if y, f, =1 and py = 1; peq is a critical point for the dynamics of p under

GD. In the case of SGD the asymptotic value of p for fixed Y f;y; may fluctuate randomly
Z’!L ynfn

around the S Furthermore, the lowest possible value of py at equilibrium (g = 0) is

pr = 1 which can be achieved if Ynfn is either = 1 or = 0. Values y, f, = 1,p = 1 are stationary
points of the dynamics of Vi, given by Vi, = 0: they are minimizers with zero square loss.

C Maximum margin and minimum norm

Lemma 2 The mazimizer of the margin under the constraint ||Vi|| =1 is the minimum norm
solution under the constraint y,fn > 1, Vn.

Minimum norm regression of binary labels is
1
r%iniHWkHQ, Vk subj. to yif(Wg, - ,Wix;) =1, i1=1,...,N. (24)
k

Minimum norm binary classification is

1
Hv%/in §||Wk||2, Vk subj. to yif(Wg, - ,Wix;) > 1, i=1,...,N. (25)
k
26

Clearly classification involves minimizing over a larger class of functions than regression. The
result will be in general different.

Observation 4 Minimum norm binary classification under the square loss with margin 1 (im-
plying fv(x;) > 1Vi) is not (in general) interpolation of all the data.

Notice that hard margin SVM is a case in point: the SVs interpolate their data point, but
other non-support vectors may have margin greater than one. This indicates that there should
be better algorithm to train deep networks for classification than regression.

D Unnormalized GD

Here we assume gradient flow without BN (and without weight decay), assuming, for simplicity,
that at initialization all the layers have the same norm, that is p; is the same for all k at
initialization. Because of this assumption we can use the following

2
Lemma 3 % is independent of k.

to claim that all pi are the same at all times. Thus p = p,%, where L is the number of layers.

Proof Consider %}f”? The calculation follows the case for the exponential loss:

Wl _ oy OWe _ 4 S g2 4 5
ot ot T NI Ty 29 (26)
because of the structural lemma. Thus the time evolution of p? = ||[Wk/||? is independent of k.

Then we obtain the dynamical system

OL

pe = =g, = 2L > (kS = yn) faok = =201 D pE(F2)? =D faiim] (27)

which can be rewritten in terms of p = p,% using p = >, %p’k as

p=2Lp"T (3 fuvm — 3 p(fa)?] (28)

which is an equation of the type known as differential logistic equation used for instance to model
sigmoidal population growth. It has an interesting dynamics as shown in the simulations in the
appendix (look at p for small initialization during the first 50 or so iterations).

The dynamics of Equation [2§] is that the smaller p;— is, the longer it takes to p to grow
(this phenomenon increases with increasing number of layers L). Thus p is constrained by the
nonlinear dynamics to be very small for a transient phase 7" of GD iterations (as we mentioned,
T is longer with more layers and longer with smaller initialization) and then to grow slowly
while f,, grows towards 1 (implying that 3" f2 approaches >y, f.). Part of this dynamics was
analyzed by Shalev-Schwartz [19] in a different context.

27

If the initial conditions are p;—g ~ 0, p(t) will eventually grow (most of the time, when it
does not go to zero), but slowly for a longish time. Part of this behavior can be explained by
the logistic equation in which the coefficients change with time, with y, f,, decreasing slowly. As

Zynfn

a consequence, the rate of increase of p decreases, though the asymptotic value of p = N

increases. until a critical point of the flow is reached

Compare this with the case in which p is large at initialization: then p may decrease until
a critical point is reached. As we already noticed, there are plenty of critical points at large p
(stationary points for p and Vi) because under appropriate overparametrization, almost every
perturbations of the weights before the linear classifier at the top yields a different interpolating
solution. Of course, in the presence of significant weight decay the gradient flow may escape
these minima.

E Dynamics and equilibria for V; and p

When A > 0 the terms ¢, = (pf,, — yn) # 0 in Equation |8 It is then reasonable to assume that
ay, > 0 and that Ve at the minimum can be written as

N
e Ofn
Vi 7 _ Z oy, 78Vk (29)

where o, = %

E.1 Weight decay and label noise

Adding a term A||W}||? to the Lagrangian corresponding to weight decay changes the dynamics
of p but not the dynamics of Vj. The Equation for p becomes (with BN and WD) Equation
that is

p = _2[2 p(fn)2 - Z fnyn] - 2>\P (30)
n n
which has an equilibrium given by

Peqg = v | — »9°

A2 i

Notice that label noise (adding +6 — with ¢ a small random real number to the labels), as
suggested by Jason Lee and coworkers[20], may play a role somewhat similar to a regularization

(31)

13

Notice that in general not all of the N terms in Equation are different from zerﬂ or independent of each
other (an upper bound is set by the rank of Jacobian %)' As an example consider the degenerate linear case

when f is a linear function.

28

A by eliminating interpolatiorﬂ Both label noise and weight decay introduce a bias towards
small p.q minima — and thus better generalization — even for large initializations.
E.2 Convergence of Linear Networks with Normalization and Regularization

Consider the separable case of a linear network (f(z) = pv’x). The dynamics is — with
by = e=PYnvTTn for the exponential loss and ¢, = (vamn — yy) for the square loss—

2 N
== Z Loynv Tz, — 20p (32)

n=1

and

U o< Z lp(xy — vV xn) (33)

If A > 0 it is reasonable to assume anl Lnyn # 0. Thus

vocZoz] — o)z, (34)

If gradient flow converges to © = 0, the solution v must satisfy vo’ « = z, where z = Z;-Vzl ;T
Assume ||z|| = 1. Then v = z. Since the operator T in v(t + 1) = Tv(t) associated with
equation [34] is not expanding [2I] (because v has unit norm), there is a fixed point v = = which

is independent of initial conditions. Numerical simulation show that this is not true for A = 0.

E.3 Convergence of Networks with Normalization

Consider N
.)
Vi =oc (1= ViViT) Y n — pfa) g (3)
n=1 k

Let us define o, = (yn — pfn) and an “average” 3 af =2 a5/ 6f” . If A >0 then o, #0, Vn.

Then (I — VkaT)% = Vj. If there is convergence, that sV, =0, then it makes sense to assume
that in most cases

af

Vif = Vi

(36)

1 F_ 1T Of|16

5Label noise also makes Zn fnyn smaller, decreasing the equilibrium p and biasing the final solution to have
larger margin

o1r v g{}; = fn with the same Vj for all n, then f = >, a;fj. The equation provides constraints on the
weights V), and the other layer weights at convergence.

29

dfn _

(pfn_yn)i (pfn_yn)(vkeqfn)v Vn=1,---,N. (37)
Vi
Thus, assuming A > 0, in most cases at equilibrium the following holds
e Afn
quzzanm, (38)
with oy, = %. SGD with minibatches of size 1 (the argument can be extended to other
sizes < N) has stationary points given by [10]
0=(I— VkaT)E(xn)af (x"), vn. (39)
Vi
which implies (for A > 0)
Of (zn)
= nj)» v . 4
Vi Vief (zn) n (40)
E.4 Dynamics with and without normalization
The dynamics with normalization is
p= _QZgnfn = 2Ap. (41)
and
Ve = 2 Y M(0fa =) (Vi — 232 (12)
- Vi
The dynamics without normalization is
p= *QZgnfn —2Ap. (43)
and 5 of
Vi == o= Un) (Vi fr — —om 44
A pzﬂ:[(pf yn) Viefn = 57)] (44)

The two dynamics have the same critical points but are different. Recall that at convergence
Peq corresponds to the inverse of the margin f* = f,, which is the same for all n when both
normalization and weight decay are present. Thus Vi, k < L is proportional to the inverse of the
margin in the normalized case and directly proportional to the margin in the unnormalized case.
The factor 4 or f* combines with the learning rate when gradient descent replaces gradient
flow. Intuitively, the strategy to decrease the learning rate when the margin is large seems a
better strategy than the opposite, since large margin crresponds to "good" minima in terms of
generalization (for classification).

30

In this context it is interesting to compute the dynamics of W,?O’"m“l and Wy induced
respectively by the two dynamics above in terms of the unnormalized dynamics Wj. The result is

Wk =Vip+ Vkp = VkaTWk + SWk = Wk (45)

for the un-normalized case and

Wgermal = (g2 + (1 = P)ViVWi (46)

for the normalized case.
Clearly the dynamics and, therefore the trajectories, in the two cases are different though the
critical points are the same.

F Margins, p and expected error

Assuming that weight decay, small initialization and A > 0 provide a bias towards solution with
“large” margin, the next step is to use simple bounds [22] to claim better expected error (and
better stability) for those solutions.

A typical generalization bound that holds with probability at least (1 —), Vg € G has the
form [22]:

ln(%)
2N

IL(g) — L(9)| < aiRN(G) + 2 (47)

A

where L(g) = E[lgamma(9(2),y)] is the expected loss, L(g is the empirical loss, Ry (G) is the
empirical Rademacher average of the class of functions G measuring its complexity; c1, co are
constants that reflect the Lipschitz constant of the loss function and the architecture of the
network. The loss function here is the ramp loss {yamma(g9(x),y) defined as

L, if yy <0,
Egamma(:%y/) =q1- yTy” if 0< yy/ <,
0, if yy >n.

We define gqmma=0(y, y') as the standard 0—1 classification error and observe that £gamma=0(y, y') <
Egamma>0 (ya y/)-

We now consider two solutions with zero empirical loss of the square loss regression problem
obtained with the same ReLU deep network and corresponding to two different minima with two
different ps. Let us call them ¢%(z) = pof%(z) and ¢°(z) = ppf°(z). Using the notation of this
paper, the functions f, and f; correspond to networks with normalized weight matrices at each
layer.

Let us assume that p, < pp.

31

We now use the observation that, because of homogeneity of the networks, the empirical
Rademacher complexity satisfies the property,

Rn(G) = pRy (F), (48)

where G is the space of functions of our unnormalized networks and F denotes the corresponding
normalized networks{ﬂ This observation allows us to use the bound Equation and the fact that

/ ln(%)
2N

the empirical L., for both functions is the same to write Lo(f%) = Lo(F®) < c1pa Ry (F)+c2

. (L
and Lo(f?) = Lo(F®) < c1ppRn(F) + ¢z 12(]\‘}). The bounds have the form

Lo(f?) < Apa + € (49)

and
Lo(fb) < App+e€ (50)

Thus the bound for the expected error Lo(f®) is better than the bound for Lo(f?).
Similar results can be obtained taking into account different L(f) for the normalized f® and
f? under different v in Equation that is

In(3)
2N
The Rademacher term can be replaced by tighter complexity estimates. An example is

provided in [I4] which gives a spectral complexity bound for neural networks that depends on
the spectral norm and (2, 1) norm of the weight matrices.

=

IL(f) — L(f)| < aRN(F) + c2

(51)

G Towards Predicting NC1 to NC4 (with A. Banburski and A.
Rangamani)

In a recent paper Papyan, Han and Donoho[I6] described four empirical properties of the terminal
phase of training (TPT) deep networks, using the cross-entropy loss function. TPT begins at
the epoch where training error first vanishes. During TPT, the training error stays effectively
zero, while training loss is pushed toward zero. Direct empirical measurements expose an
inductive bias they call neural collapse (NC), involving four interconnected phenomena. (NC1)
Cross-example within-class variability of last-layer training activations collapses to zero, as the
individual activations themselves collapse to their class means. (NC2) The class means collapse
to the vertices of a simplex equiangular tight frame (ETF). (NC3) Up to rescaling, the last-layer
classifiers collapse to the class means or in other words, to the simplex ETF (i.e., to a self-dual
configuration). (NC4) For a given activation, the classifier’s decision collapses to simply choosing

Furthermore, the Rademacher complexity of the space of functions associated with normalized networks of the
same architecture is the same (see [14]).

32

whichever class has the closest train class mean (i.e., the nearest class center [NCC] decision
rule).

We show here that these properties of the Neural Collapse[16] are predicted for the case of
binary classification by the theory of this paper. In a network with L layers the last layer unit
activations for an input z; . where c is the class are a vector h;. € RP by [16]. To conform to
their notation we consider in this section a slightly different network from the one considered
in the paper. Until now, we assumed that the network has one scalar output which is ideally
+1. Here we consider instead a network with C' outputs (in the binary case C' = 2; one output
represents the positive class and the other the negative one, both trained to take the value +1 for
the respective class). The last layer weights are a matrix Vi, € Rc’ﬁ The quantities considered
by [16] are p. = ﬁ ZZ-CN hic, pe € RP, where N is the number of training examples in each

— (pe—pg)
le—nall”
simply VT for simplicity of notation. We observe that VCThi,c/ = fe(x; ¢),since the network is in

our new notation f.(2;) = (VIo(Vi_1--oc(Vizie))) = VL he s

class) and ug = % ZCC e, pe € RP. Furthermore fi, From now on we call V7,

G.1 Square loss

Corollary 4 Under the assumptions of square loss with Batch Normalization and Weight Decay,
the gradient flow equations imply NC1, NC2, NC3, NC4.

Proof

Consider a ReLU deep network fyy(z) = Wro(Wr_1...Wao(Wiz)...), that is trained on
a dataset S = {(xn,yn)} that is a C-way classification problem. Here we will use y,, to denote
both the class labels and the one hot vectors indicating the class labels. We will use the Lo
regularized square loss as our training objective. The loss is thus:

C .
L) = 3 5 (o) A2 @) 5 Wl (52)
l

n =1

We use gradient flow to train the network. W = _%' Let us analyze the dynamics of the

last layer, considering each row Wy of W, separately:

Wf = Z(y’rcL - <W£v h(xn»)h(xn) -)‘WE

n

neN(c) neN(c),c'#c

(53)

Let us assume that at equilibrium we achieve quasi-interpolation, with fI(,{,:) (xn(c)) =1—F¢,

and féé) (Tp(e)) = =3+ Under the conditions of NC1 we know that all feature vectors in a

81n the binary case the last layer weights are VE:H and VLC:A.

33

class collapse to the class mean, ie h(2y()) = e Let us denote the global feature mean by
b = % > ¢ te- This means we have:

. € c
Wf:exNx,ucc_lxnguc/)\WL:O
C (& 54
— = N e o) o
L_)\(C—l) He mG

This means that the last layer parameters Wy, are a scaled version of the centered class-wise

feature matrix M = [... u. — pg - . .]. This means that at equilibrium, with quasi interpolation of
the training labels, we have H‘/I&Vﬁ = % This is the condition for NC3.

From the gradient flow equations, we can also see that at equilibrium, with quasi interpolation,
all classifier vectors in the last layer (W7, and hence p. — p1) have the same norm:

Wi =2 (v — (WE, h(@n)))h(zn) = AWE =0

n

— (WEWE) = Y (05 — fiy) @) fif) () = AIWEI =0 (55)

N C
— Wil =5 (- 5—5¢)

From the quasi-interpolation of the correct class we have that

<WLC/7,UC> =1l—e¢
= (Wi,ug)+ Wi e —pa)=1—c¢

. ANC-1),
— Wiopo) = 1- = XDy 56
_1__AW—QXN<_ ¢ ﬁ
T oNe AT 1f
1
— (Wie) = &

From the quasi-interpolation of the incorrect classes, we have that

34

<W£a,uc’> =

-1
€
= (WL, pe = pe) + (Wi ne) = 57—
)\(C—].) c I\ € 1
“onve WEWH=ET7 6 (57)
c)\C—l c o € 1
— ||WL||§><(CN6)><<VL7VL>:C_1C
¢ e 1
- <VL7VL>:_m

Here Vi = %, and we use the fact that all the norms ||[IW5||2 are equal. This completes
the proof that the normalized classifier parameters form an ETF. Moreover since W5 o pe — i
and all the proportionality constants are independent of ¢, we have that >, W; = 0. This
completes the proof of the NC2 condition.

We note that for the square loss these results apply to each global minimum (that is, close-to-
zero square-loss), irrespectively of its peq and, therefore, irrespectively of how good the associated
expected error is.

G.2 Exponential loss

Corollary 5 Under the assumptions of square loss with Batch Normalization and Weight Decay,
the SGD equations imply NC1, NC2, NC3, NCj.

For the exponential loss with normalization and weight decay the gradient flow corresponding
to GD are gy = + >, e Pnfny, £, — Ap and Vi = p3 3, 6’py”f"yn5k§7{};
For SGD with minibatch size = 1 the equations at equilibrium are

1 _
0= N Xn:e pynfnynfn -)\P

Ofn

1 _
O:’Oﬁze pynfnynskm
n

forkzl,-",L—lis(withSk:I—VkaT). _
For GD a critical point with p = 0 implies A\p = % Yon e~ PYnfny £ and thus at Vi, = 0 it
implies

_ 0 fn -
Ze p'!u/nfnyn8“][/.}C — sze pynfnynfn =)\ka. (59)

The condition above does not by itself imply that all the margins f,, are the same (which
is required for NC1). The situation is however different for SGD: equilibrium for SGD with
35

minibatch size of 1 (the argument is valid also for minibatch sizes larger than 1 but smaller than
N[10]) implies

eipynfnynfn =)\P7 vn =]-7 e 7N (60)

and thus fi = f,, ,vn=1,.--- N.
With result the same arguments used for the square loss can be used to prove NC1 to NC4
with small changes as show here.

e NC1:

as before since the margins y; f; are equal for all . Then Vph; . = f€ is also independent of
¢ implying that h; . is independent of 7 at convergence.

e NC2: see above.
e NC3: see above.

e NC4: theorem 2 of [16] states that in the exponential loss case, NC1 and NC2 imply NC3
and NC4.

The proof above for NC1 requires A > 0. In the square loss case it is also required but for a
superficially different reason (to ensure convergence of the dynamical system).

The proof for the exponential loss requires SGD, unlike the square loss case. We do not know
whether this is is just a technicality. We conjecture that is not. In this case the prediction would
be the NC1 should be found under the square loss case with or without SGD, whereas NC1 under
the exponential loss requires SGD. We further conjecture that small minibatch sizes should be
better than large ones for the exponential loss case.

H Bias towards low-rank weight matrices

An intriguing argument for small rank weight matrices is the following observation:

Lemma 6 At SGD convergence — that is when p =0, V=0, VS where S is a minibatch —
for A > 0 the matrices Vi, have rank 1.

The lemma follows assuming that Vj, = 0 for all minibatches at convergence for A > 0. This
implies

_ 9fa _
kan = m, \V/k = 17 ,L, \V/TZ (61)
To see why suppose
flx) = (Veo(Vi-1---0(Viz))) (62)

36

where o(z) = o/(z)z. The equation can be rewritten for each training example as

f(zj) =ViDp a(z;)Vi—1--- Vi1 Dy () Vi, - - - Dy () Viz; (63)

where Dy(x;) is a diagonal matrix with 0 and 1 entries depending on whether the corresponding
RELU is active or not for the specific input z;, that is Dy_;(z;) = diaglo’(Nk(z;)] with Ny (z;)
the input to layer k.

Call VL Dr_1(2)Vr_1 -+ Viy1Dr(x) = a” and Dy_1(x)Vy_1Dy_o(x) - -- Di(2)Viz = b. Then
f(z) = a”Vib and ;—&; = ab As sanity checks, fT = bTVkTa = f; furthermore, the structural
lemma Equation [I] gives

of(Vix) g ipjy/i]
Z (;VZJ)W = Za YV = f(x). (64)
1,] [2¥}

Then Equation [61] becomes

ka = [VLDL—l(Z')VL—l e Vk+1Dk(.%')}TDk,1(w)kale,Q(x) cee Dl(x)Vla: (65)
Then Equation [61] becomes

Vif = [ViDp—1(2)Vi—1 - Viy1 Di(@)]T Dj—1(2)Vim1 Dg—2() - - - D1 (2)Vaiw = ab” (66)

Thus Vj is a rank one matrix. This means that for examp[le when L = 2 that

fx) = aQDl(x)alblT:B (67)
Remarks

e Notice that if each weight matrix is of rank one or close to rank one, the best way to add
parameters to the network of a given width is to increase its depth: the number of effective
parameters will increase linearly with depth.

e ResNets with skip connections from every layer to the output may be ideal for peeling out
the relevant vector of parameters, each one corresponding to a higher degree of nonlinearity
in the network.

e BN should correspond to normalizing each row of each weight matrix, thereby effectively
normalizing each weight matrix. Thus the argument developed here for LM should apply
to networks normalized with BN though the dynamics will be different.

An intuition of why there should be a bias towards low rankis that the network is trying
to reach the maximum y, f, for each training example n with the minimum p. This suggests

minimization of the "stable rank", defined as the ratio of the square of its Frobenius norm and

2
Iz D07

2

the square of its spectral norm TVIE = fmax; o

YWhen f = a”b, then g—ﬁ = b and % =a

37

I Blue-sky Remarks on Orthogonality

Let us now make some strong assumptions to get some intutition about the potential impact of
the constraints on the weight matrices.
Assumptions

e Let us assume that all V, Vk=1,---(L — 1) € RPP have the same dimensions, whereas
Vi, € RLP.

o We assume linear deep networks at training time, that is without RELUs. This is inspired
by the observation that if solutions Vi, are found that satisfy Equation[65 then they will
also satisfy the same Equations when the matrices Dy are replaced by I, while the converse
is not true.

The intuition is that this big oversimplification may still be interesting, because the “training”
equations above have to hold for all the x,, in the training set. This implies that the D
matrices at each level are likely to eventually have 1 in each position of the diagonal across
the whole of the training set. Of course, this will not hold completely and for all layers,
especially if p > NV and especially for the layers at the top of the network, in which case
the presence of the D; makes the constraint Equation [61] effectively weaker.

Under these three assumptions, let us consider two natural types of solutions that are consistent
with Equation [61]

1.1 Vj, as projection matrices

A class of solution which is consistent with the constraints represented by Equation [61] is

Vi=Vo=---=Vi (68)

and
VL = DL_1(ZL‘)VL_1 """ Vk+1Dk(:L')Vk ce Dl(l’)vll' = ﬁ (69)
In order for this to be true, the Vi k < L matrices can be projection matrices (P is a
projection if P? = P; it is an orthogonal projection if P = PT). Then, all the weight matrices
are proportional to each other apart from the weight matrix of the last (L) layer which must be
a vector proportional to the vector of activities of the units in layer L — 1.
If we assume that feedforward networks with T' layers converge to this type of solution, the
interesting prediction is that recurrent networks (therefore with weight sharing across layers)
under T iterations should be identical to forward networks with T layers (without weight sharing).

38

1.2 V, as orthogonal matrices

Another possible set of solutions consists of matrices V}, (assuming the weight matrices are all
square matrices)each proportional to an orthogonal matrix. The constraint Equations |61] suggest
the structure of a group since V}, is proportional to the product of similar matrices.

A key property of orthogonal matrices is that VkT = Vk_l. Because of this property the
constraint equations are always satisfied. For instance assume f(z) = V4V3VoVix with the
matrices being orthogonal. Then it is easy to check that the constraint equations yield V3
St =VIEWVV)T and V; o (VaVs)T (V1)T. Together they satisfy Vs = Va.

We observe that the underlying reason for restricting this class of solutions to the orthogonal
group is BN or WN;, since they are equivalent to constrained optimization with Lagrange
multipliers. As observed in [23] regularization of each weight matrix of a linear network reduces the
symmetry group of the loss function from GL,(R)) to the orthogonal group O,(R). Furthemore,
it is interesting to notice, as they do, that

e Orthogonal matrices are the determinant +1 matrices of minimal Frobenius norm (the
squared determinant is the product of the squared singular values);

e Orthogonal matrices are the inverse matrices of minimum total squared Frobenius norm
(sum of the squared singular values);

e A square matrix is orthogonal iff A=1 = AT
e Orthogonal matrices diagonalize any symmetric real-valued matrix A = UAUT.

There is a large number of papers (for a random one see [24] and references therein) discussing
the advantages of orhogonality for generalization in deep networks and probably as many papers
proposing regularization-like algorithms in order to impose orthogonality in the weight matrices
in a deep network. More generally, the discussion above should be extended from orthogonal
matrices to non-square matrices in an orthogonal Stiefel manifold on the sphere. As far as we
know, this appendix represents the first time that commonly used normalization algorithms, such
as BN, are shown to bias weight matrices towards being orthogonal (or projection) vectors. It
is natural to conjecture that additional properties of deep networks may be derived from the
rich structure induced by this bias. On the other hand, we cannot expect weight matrices to be
orthogonal in real networks because of the role of the RELUs, which is not taken into account in
the simplified analysis above, and because BN in practice does not exactly normalizes the weight

matriced?]
I.3 Diagonal networks (with A. Banburski)

Diagonal networks have been recently analyzed in a number of theoretical papers (see [19] and
references therein) and are particularly interesting here for two reasons which we show below:

20Normalization of each row exactly to norm 1 implies normalization of the matrix to M where M is the number
of rows. However, normalization of each row to different constants does not lead to orthogonality.

39

diagonal initializations are preserved by gradient descent and the D-matrices corresponding to
the RELUs stages commute.
First, notice that gradient updates are given by

w1 — wt = =0y L(f(wizn),yn) Vi, f (w3 20) (70)

and so an update to any off-diagonal weight will be non-zero only if V,, f(w; z,) for that weight
is non-zero. We trivially find that

Of(x)
owy
This means that a off-diagonal layer-k entry (i,j) update depends on a term in f that has an
i-th column in layer k£ + 1 and j-th row in layer k£ — 1. But if at time ¢ = 0 the off-diagonal terms
1 # j vanish, then the off-diagonal gradient update also vanishes for t = 1 and similarly for all
subsequent times. Hence GD preserves diagonal initial conditions.
Assuming the same setting of square matrices as in the previous subsections, we can immedi-
ately see the usefulness of the diagonal assumption, from the simple fact that diagonal square
matrices commute, so we can write

f=Vp..ViDp_1(x)...Di(x)x =V ... V& with Z=Dp_1(x)...Dy(z)x,

= WD 1 ()W - Wi Dp(x) D1 ()W) Dy_o(z) - - Dy(x)Whaz. (71)

i.e. we can push all the nonlinearities to the end and absorb them now into a single nonlinear
transformation of the data x. This then allows us to deal with the sum over all training examples:
by defining £ = ", anZy, we have f =V ... Viz.
We can now write the equation at the critical point here as
of , o .
= VI VE L VE gt
oV L E+1VE—1

and ‘ '
Vif=Vivp - Vi aVilVee1 -+ 2
where we now can label the diagonal layers with a single index 7. Let us look at a specific example
of a 4-layer network now, f = V4V3VoViZ. The equations are of the form
Vif =V3vivia'

and similarly for other layers. Solving these, we get the very interesting constraints f2 =
(V3Vieh)? = (VEVigh)? = ..., or that some Vi = 0. This gives us that at the critical point,
ka::t% orVki:O.

Putting back the definitions for the different expressions, we get that at the critical points,
the normalized weights are given by

SpanDp1(xl) ... Dy(at)zt,
Yo anf(Vian) ’

with ¢ = 1,...,p being one of the input channels (and the diagonal path trhough the network).

Notice that the dependence on the layer k is only in the =+ sign.

40

Vi=4+

(72)

	Introduction
	Why square loss
	Regression and classification

	The dynamics of GD in and Vk
	Notation
	Gradient descent
	Dynamics under normalization and weight decay
	Equilibrium values

	Dynamics
	Generalization in Deep Networks
	Predictions
	Summary
	Remarks

	Normalization during Gradient Descent
	Weight Normalization
	Batch Normalization

	Gradient flow for and Vk
	Dynamics under normalization

	Maximum margin and minimum norm
	Unnormalized GD
	Dynamics and equilibria for Vk and
	Weight decay and label noise
	Convergence of Linear Networks with Normalization and Regularization
	Convergence of Networks with Normalization
	Dynamics with and without normalization

	Margins, and expected error
	Towards Predicting NC1 to NC4 (with A. Banburski and A. Rangamani)
	Square loss
	Exponential loss

	Bias towards low-rank weight matrices
	Blue-sky Remarks on Orthogonality
	 Vk as projection matrices
	Vk as orthogonal matrices
	Diagonal networks (with A. Banburski)

