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1 Introduction

A key question in statistical learning is which hypotheses (function) spaces are
learnable. Roughly speaking, a hypotheses space is learnable if there is a consis-
tent learning algorithm, i.e. one returning an optimal solution as the number of
sample goes to infinity. Classic results for supervised learning characterize learn-
ability of a function class in terms of its complexity (combinatorial dimension)
[17, 16, 1, 2, 9, 3]. Indeed, minimization of the empirical risk on a function class
having finite complexity can be shown to be consistent. A key aspect in this ap-
proach is the connection with empirical process theory results showing that finite
combinatorial dimensions characterize function classes for which a uniform law of
large numbers holds, namely uniform Glivenko-Cantelli classes [7].

More recently, the concept of stability has emerged as an alternative and effective
method to design consistent learning algorithms [4]. Stability refers broadly to con-
tinuity properties of learning algorithm to its input and it is known to play a crucial
role in in regularization theory [8]. Surprisingly, for certain classes of loss functions,
a suitable notion of stability of ERM can be shown to characterize learnability of a
function class [10, 12, 11].

In this paper, after recalling some basic concepts (Section 2), we review results
characterizing learnability in terms of complexity and stability in supervised learn-
ing (Section 3) and in the so called general learning (Section 4). We conclude with
some remarks and open questions.
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2 Supervised Learning, Consistency and Learnability

In this section, we introduce basic concepts in Statistical Learning Theory (SLT).
First, we describe the supervised learning setting, and then, define the notions of
consistency of a learning algorithm and of learnability of a hypotheses class.

Consider a probability space (£, p), where & = 2" x %, with £~ a measurable
space and ¢ a closed subset of R. A loss function is a measurable map £: R x % —
[0,+o0). We are interested in the problem of minimizing the expected risk,

infép, &)= [ AS@dpxy), (1)

where .Z C %7 is the set of measurable functions from 2" to % (endowed with the
product topology and the corresponding Borel o-algebra). The probability distribu-
tion p is assumed to be fixed but known only through a training set, i.e. a set of pairs
z, = ((x1,51)5- -+, (%, yn)) € 2" sampled identically and independently according
to p. Roughly speaking, the problem of supervised learning is that of approxima-
tively solving Problem (1) given a training set z,,.

Example 1 (Regression and Classification). In (bounded) regression % is a bounded
interval in R, while in binary classification % = {0,1}. Examples of loss func-
tions are the square loss £(t,y) = (¢ —y)? in regression and the misclassification loss
Lt,y) = ]l{,#y} in classification. See [16] for a more exhaustive list of loss functions.

In the next section, the notion of approximation considered in SLT is defined rigor-
ously. We first introduce the concepts of hypotheses space and learning algorithm.

Definition 1. A hypotheses space is a set of functions 7 C .%. We say that 57 is
universal if inf & &, = inf 4 &, for all distributions p on 2.

Definition 2. A learning algorithm A on 7 is a map,

A: Ugn%%, ZnHAzn:A(Zn)v

neN

such that, for all n > 1, A|4» is measurable with respect to the completion of the
product c-algebra on Z".

Empirical Risk Minimization (ERM) is arguably the most popular example of learn-
ing algorithm in SLT.

Example 2. Given a training set z, the empirical risk &, : .# — R is defined as

-

O(f (xi),pi)-

S |-

an (f) =

i=1

Given a hypotheses space .7, ERM on .57 is defined by minimization of the empir-
ical risk on .77
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We add one remark.

Remark 1 (ERM and Asymptotic ERM). In general some care is needed while defin-
ing ERM since a (measurable) minimizer might not be ensured to exist. When
% ={0,1} and ¢ is the misclassification loss function, it is easy to see that a mini-
mizer exists (possibly non unique). In this case measurability is studied for example
in Lemma 6.17 in [15]. When considering more general loss functions or regres-
sion problems one might need to consider learning algorithms defined by suitable
(measurable) almost minimizers of the empirical risk (see e.g. Definition 10).

2.1 Consistency and Learnability

Aside from computational considerations, the following definition formalizes in
which sense a learning algorithm approximatively solves Problem (1).

Definition 3. We say that a learning algorithm A on # is uniformly consistent' if

Ve >0, nl_i)rilmsgpp”({zn 1 6p(Ay,) fglffé’p >¢e}) =0,

and universally uniformly consistent if ¢ is universal.
The next definition shifts the focus from a learning algorithm on 57, to 2 itself.

Definition 4. We say that a space ¢ is uniformly learnable if there exists a uni-
formly consistent learning algorithm on 7. If .77 is also universal we say that it is
universally uniformly learnable.

Note that, in the above definitions, the term “uniform” refers to the distribution for
which consistency holds, whereas “universal” refers to the possibility of solving
Problem (1) without a bias due to the choice of 7. The requirement of uniform
learnability implies the existence of a learning rate for A [15] or equivalently a bound
on the sample complexity [2]. The following classical result, sometimes called the
’no free lunch” theorem, shows that uniform universal learnability of a hypotheses
space is too much to hope for.

Theorem 1. Let % = {0,1}, and 2~ such that there exists a measure |L on 2~ hav-
ing an atom-free distribution. Let € be the misclassification loss. If 7€ is universal,
then F€ is not uniformly learnable.

The proof of the above result is based on Theorem 7.1 in [6], which shows that
for each learning algorithm A on 7 and any fixed n, there exists a measure p on
2" x % such that the expected value of &), (A,,) —inf» &), is greater than 1/4. A
general form of the no free lunch theorem, beyond classification, is given in [15] (see

! Consistency can de defined with respect to other convergence notions for random variables. If the
loss function is bounded, convergence in probability is equivalent to convergence in expectation.
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Corollary 6.8). In particular, this result shows that the no free lunch theorem holds
for convex loss functions, as soon as there are two probability distributions py, p2
such that inf ;» &, # inf ;» &), (assuming that minimizers exist). Roughly speaking,
if there exist two learning problems with distinct solutions, then .7’ cannot be uni-
versal uniformly learnable (this latter condition becomes more involved when the
loss is not convex).

The no free lunch theorem shows that universal uniform consistency is too strong
of a requirement. Restrictions on either the class of considered distributions p or the
hypotheses spaces/algorithms are needed to define a meaningful problem. In the
following, we will follow the latter approach where assumptions on ¢ (or A), but
not on the class distributions p, are made.

3 Learnability of a Hypotheses space

In this section we study uniform learnability by putting appropriate restrictions on
the hypotheses space 7. We are interested in conditions which are not only suf-
ficient but also necessary. We discuss two series of results. The first is classical
and characterizes learnability of a hypotheses space in terms of suitable complexity
measures. The second, more recent, is based on the stability (in a suitable sense) of
ERM on 7.

3.1 Complexity and Learnability

Classically assumptions on ¢ are imposed in the form of restrictions on its “’size”
defined in terms of suitable notions of combinatorial dimensions (complexity). The
following definition of complexity for a class of binary valued functions has been
introduced in [17].

Definition 5. Assume % = {0, 1}. We say that 57 shatters S C 2" if foreach E C §
there exists fr € 7 such that fg(x) =0, ifx € E, and fg(x) = 1isx € S\ E. The
VC-dimension of 77 is defined as

VC(4) =max{d € N : 3§ = {x1,...x4} shattered by 5}

The VC-dimension turns out to be related to a special class of functions, called
uniform Glivenko-Cantelli, for which a uniform form of the law of large numbers
holds [7].

Definition 6. We say that .77 is a uniform Glivenko-Cantelli (uGC) class if it has
the following property

Ve >0, ngrfwsgpp”({zn : ]ng}p}|éap(f)—c§’z,l(f)| >8}> =0.
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The following theorem completely characterizes learnability in classification.

Theorem 2. Let % = {0, 1} and ¢ be the misclassification loss. Then the following
conditions are equivalent:

1. S is uniformly learnable,

2. ERM on € is uniformly consistent,
3. 7 is a uGC-class,

4. the VC-dimension of ¢ is finite.

The proof of the above result can be found for example in [2] (see Theorems 4.9,
4.10 and 5.2). The characterization of uGC classes in terms of combinatorial dimen-
sions is a central theme in empirical process theory [7]. The results on binary valued
functions are essentially due to Vapnik and Chervonenkis [17]. The proof that uGC
of 7 implies its learnability is straightforward. The key step in the above proof
is showing that learnability is sufficient for finite VC-dimension, i.e. VC(J#) < oo.
The proof of this last step crucially depends on the considered loss function.

A similar result holds for bounded regression with the square [1, 2] and absolute
loss functions [9, 3]. In this case, a new notion of complexity needs to be defined
since the VC-dimension of real valued function classes is not defined. Here, we re-
call the definition of y-fat shattering dimension of a class of functions ¢ originally
introduced in [9].

Definition 7. Let 7 be a set of functions from 2" to R and y > 0. Consider S =
{x1,...,x4} C Z . Then S is y-shattered by S if there are real numbers ry,...,ry
such that for each E C S there is a function fg € JZ satistying

JE(X)<ri—y VxeS\E
fE(x) >ri+y Vx€E.

We say that (r1,...,ry) witnesses the shattering. The y-fat shattering dimension of
HC 1s
fat o (y) = max{d : 35 = {x1,...,x4} C Z s.t. S is y-shattered by .7 }.
As mentioned above, an analogous of Theorem 2 can be proved for bounded
regression with the square and absolute losses, if condition 4) is replaced by

fat - (y) < +eo for all ¥ > 0. We end noting that is an open question proving that the
above results holds for loss function other than the square and absolute loss.

3.2 Stability and Learnability

In this section we show that learnability of a hypotheses space 7 is equivalent
to the stability (in a suitable sense) of ERM on 7. It is useful to introduce the
following notation. For a given loss function ¢, let L : % x Z — [0,0) be defined as
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L(f,z) =4(f(x),y), for f € F and z= (x,y) € Z. Moreover, let Z,, be the training z,
with the i-th point removed. With the above notation, the relevant notion of stability
is given by the following definition.

Definition 8. A learning algorithm A on JZ is uniformly CV,, stable if there exist
sequences (B, 8, )nen such that B, — 0, §, — 0 and

supp"{|L(Ay 71) — LAz, 2)| < B} > 1= 8, @)
)

forallie {1,...,n}.

Before illustrating the implications of the above definition to learnability we first
add a few comments and historical remarks. We note that, in a broad sense, stability
refers to a quantification of the continuity of a map with respect to its input. The
key role of stability in learning has long been advocated on the basis of the inter-
pretation of supervised learning as an ill-posed inverse problems [11]. Indeed, the
concept of stability is central in the theory of regularization of ill-posed problem
[8]. A first quantitative connection between the performance of a symmetric learn-
ing algorithm? and a notion of stability is derived in the seminal paper [4]. Here a
notion of stability, called uniform stability, is shown to be sufficient for consistency.
If we let z;" be the training z, with the i-th point replaced by u, uniform stability is
defined as,

IL(A,in:2) — L(Ag,,2)| < Bu, 3)

for all z, € ", u,z € Z" and i € {1,...,n}. A thorough investigation of weaker
notions of stability is given in [10]. Here, many different notions of stability are
shown to be sufficient for consistency (and learnability) and the question is raised
of whether stability (of ERM on #) can be shown to be necessary for learnability
of . In particular a definition of CV stability for ERM is shown to be necessary
and sufficient for learnability in a Probably Approximate Correct (PAC) setting,
that is when ¢ = {0, 1} and for some h* € J#, y = h*(x), for all x € 2. Finally,
Definition ?? of CVj,, stability is given and studied in [11]. When compared to
uniform stability, we see that: 1) the “replaced one” training set z," is considered
instead of the “leave one out” training set z. ; 2) the error is evaluated on the point z;
which is left out, rather than any possible z € Z; finally 3) the condition is assumed
to hold for a fraction 1 — §, of training sets (which becomes increasingly larger as n
increases) rather than uniformly for any training set z,, € 2.
The importance of CV,, stability is made clear by the following result.

Theorem 3. Let % = {0, 1} and ¢ be the misclassification loss function. Then the
following conditions are equivalent,

1. F is uniformly learnable,
2. ERM on 57 is CV,, stable

2 We say that a learning algorithm A is symmetric if it does not depend on the order of the points
in z,.
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The proof of the above result is given in [11] and is based on essentially two steps.
The first is proving that CV},, stability of ERM on # implies that ERM is uniformly
consistent. The second is showing that if 77 is a uGC class then ERM on 7 is CV},,
stable. Theorem 3 then follows from Theorem 2 (since uniform consistency of ERM
on 7 and 57 being uGC are equivalent).

Both steps in the above proof can be generalized to regression as long as the loss
function is assumed to be bounded. The latter assumption holds for example if the
loss function satisfies a suitable Lipschitz condition and ¢ is compact (so that 7
is a set of uniformly bounded functions). However, generalizing Theorem 3 beyond
classification requires the generalization of Theorem 2. For the the square and ab-
solute loss functions and %" compact, the characterization of learnability in terms
of 7y-fat shattering dimension can be used. It is an open question whether there is a
more direct way to show that learnability is sufficient for stability, independently to
Theorem 2 and to extend the above results to more general classes of loss functions.
We will see a partial answer to this question in Section 4.

4 Learnability in the General Learning Setting

In the previous sections we focused our attention on supervised learning. Here we
ask whether the results we discussed extend to the so called general learning [16].

Let (Z,p) be a probability space and .# a measurable space. A loss function is
amap L: .7 x Z — [0,0), such that L(f,-) is measurable for all f € .%. We are
interested in the problem of minimizing the expected risk,

6 &)= [ LUA2dPG), 4
inféy. &)= [ LU2)dp() @
when p is fixed but known only through a training set, z, = (z1,...,2,) € 2" sam-

pled identically and independently according to p. Definition 2 of a learning algo-
rithm on J# applies as is to this setting and ERM on J7 is defined by the minimiza-
tion of the empirical risk

=

S|

an (f) =

1

L(f,zi).
1

While general learning is close to supervised learning, there are important differ-
ences. The data space 2 has no natural decomposition, .% needs not to be a space
of functions. Indeed, .% and £ are related only via the loss function L. For our
discussion it is important to note that the distinction between .% and the hypotheses
space ¢ becomes blurred. In supervised learning .7 is the largest set of functions
for which Problem (1) is well defined (measurable functions in 2 ). The choice
of a hypotheses corresponds intuitively to a more “manageable” function space. In
general learning the choice of .% is more arbitrary as a consequence the the defi-
nition of universal hypotheses space is less clear. The setting is too general for an
analogue of the no free lunch theorem to hold. Given these premises, in what follows
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we will simply identify .% = J# and consider the question of learnability, noting
that the definition of uniform learnability extends naturally to general learning. We
present two sets of ideas. The first, due to Vapnik, focuses on a more restrictive
notion of consistency of ERM. The second, investigates the characterization of uni-
form learnability in terms of stability.

4.1 Vapnik’s Approach and Non Trivial Consistency

The extension of the classical results characterizing learnability in terms of com-
plexity measure is tricky. Since 7 is not a function space the definitions of
VC or V, dimensions do not make sense. A possibility is to consider the class
Lo :={z€ % — L(f,z) for some f € 7} and the corresponding VC dimen-
sion (if L is binary valued) or V; dimension (if L is real valued). Classic results
about the equivalence between the uGC property and finite complexity apply to the
class Lo 7Z. Moreover, uniform learnability can be easily proved if Lo 7 is a uGC
class. On the contrary, the reverse implication does not hold in the general learning
setting. A counterexample is given in [16] (Sec. 3.1) showing that it is possible to
design hypotheses classes with infinite VC (or Vy) dimension, which are uniformly
learnable with ERM. The construction is as follows. Consider an arbitrary set 7
and a loss L for which the class L o 7" has infinite VC (or Vi) dimension. Define a
new space . := U {h} by adding to ./ an element / such that L(f,z) < L(h,z)
forall z€ 2 and h € 53 . The space Lo J has infinite VC, or Vy, dimension
and is trivially learnable by ERM, which is constant and coincides with / for each
probability measure p. The previous counterexample proves that learnability, and in
particular learnability via ERM, does not imply finite VC or Vy dimension. To avoid
these cases of “trivial consistency” and to restore the equivalence between learnabil-
ity and finite dimension, the following stronger notion of consistency for ERM has
been introduced by Vapnik [16].

Definition 9. ERM on 7 is strictly uniformly consistent if and only if

. 0o B _
Ve >0, ,}ggsgpp (inf &, (f) —infép(f) > €) =0,

where S = {f €  : &,(f) > c}.

The following result characterizes strictly uniform consistency in terms of uGC
property of the class Lo 77 (see Theorem 3.1 and its Corollary in [16]])

Theorem 4. Let B > 0 and assume L(f,z) < B forall f € 7 and z € % . Then the
following conditions are equivalent,

1. ERM on J7 is strictly consistent,
2. Lo 2 is a uniform one-sided Glivenko-Cantelli class.

3 Note that this construction is not possible in classification or in regression with the square loss.
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The definition of one-sided Glivenko-Cantelli class simply corresponds to omitting
the absolute value in Definition 6.

4.2 Stability and Learnability for General Learning

In this section we discuss ideas from [14] extending the stability approach to general
learning. The following definitions are relevant.

Definition 10. A uniform Asymptotic ERM (AERM) algorithm A on JZ is a learning
algorithm such that

vg > 07 r}grolo s‘;ppn({zn : éaln (AZn) _ipj‘gln > 8}) = 0

Definition 11. A learning algorithm A on JZ is uniformly replace one (RO) stable
if there exists a sequence f3, — 0 such that

1 n
=Y LA 1 2) = L(Ag,,2) < B
i=1

forallz, € 2", u,z€ Z"andi e {1,...,n}.

Note that the above definition is close to that of uniform stability (3), although the
latter turns out to be a stronger condition. The importance of the above definitions
is made clear by the following result.

Theorem 5. Let B > 0 and assume L(f,z) < B forall f € 5 and z € Z. Then the
following conditions are equivalent,

1. H is uniformly learnable,
2. there exists an AERM algorithm on 7€ which is RO stable.

As mentioned in Remark 1, Theorem 3 holds not only for exact minimizers of the
empirical risk, but also for AERM. In this view, there is a subtle difference between
Theorem 3 and Theorem 5. In supervised learning, Theorem 3 shows that uniform
learnability implies that every ERM (AERM) is stable, while in general learning,
Theorem 5 shows that uniform learnability implies the existence of a stable AERM
(whose construction is not explicit).

The proof of the above result is given in Theorem 7 in [14]. The hard part of the
proof is showing that learnability implies existence of a RO stable AERM. This part
of the proof is split in two steps showing that: 1) if there is a uniformly consistent
algorithm A, then there exists a uniformly consistent AERM A’ (Lemma 20 and
Theorem 10); 2) every uniformly consistent AERM is also RO stable (Theorem 9).
Note that the results in [14] are given in expectation and with some quantification
of how different convergence rates are related. Here we give results in probability
to be uniform with the rest of the paper and state only asymptotic results to simplify
the presentation.
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5 Discussion

In this paper we reviewed several results concerning the learnability of a hypothe-
ses space. Extensions of these ideas can be found in [5] (and references therein)
for multi-category classification, and in [13] for sequential prediction. It would be
interesting to devise constructive proofs in general learning suggesting how stable
learning algorithms can be designed. Moreover, it would be interesting to study
universal consistency and learnability in the case of samples from non stationary
processes.
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