0=\ Center for Brains,
f_f; Minds & Machines

CBMM Memo No. 037 29 September 2015

Notes on Hierarchical Splines, DCLNs and i-theory

by

Tomaso Poggio, Lorenzo Rosasco,Amnon Shashua, Nadav Cohen and Fabio Anselmi

Abstract

We define an extension of classical additive splines for multivariate function approximation that we
call hierarchical splines. We show that the case of hierarchical, additive, piece-wise linear splines
includes present-day Deep Convolutional Learning Networks (DCLNs) with linear rectifers and pooling

(sum or max). We discuss how these observations together with i-theory may provide a framework for
a general theory of deep networks.

This work was supported by the Center for Brains, Minds and Ma-
chines (CBMM), funded by NSF STC award CCF - 1231216.

Notes on Hierarchical Splines, DCLNs and
i-theory

Tomaso Poggio, Lorenzo Rosasco,Amnon Shashua,
Nadav Cohen and Fabio Anselmi

September 29, 2015

Abstract

We define an extension of classical additive splines for multivariate
function approximation that we call hierarchical splines. We show that the
case of hierarchical, additive, piece-wise linear splines includes present-day
Deep Convolutional Learning Networks (DCLNs) with linear rectifiers and
pooling (sum or max). We discuss how these observations together with
i-theory may provide a framework for a general theory of deep networks.

1 Introduction

We interpret present-day DCLNs as an interesting hierarchical extension of clas-
sical function approximation techniques, in particular additive linear splines.
Other classical approximations techniques such as tensor product splines and
radial basis functions can be extended to hierarchical architectures. Our frame-
work builds upon the close connections between DCLNs and past results in
i-theory which was developed to characterize a class of neurophysiologically
plausible algorithms for invariant pattern recognition. Many of our observa-
tions and results are in the Remarks part of the sections. We assume knowledge
of i-theory results and definitions [1].

2 DCLNs

Consider the network module depicted in Figure 1, a). We give a description of
standard DCLNs using i-theory notation [2].

The open circle represents a complex cell; A represents its receptive field and
pooling range. Within each receptive field /\ there are several simple cells. Each
performs an inner product of the patch x! (which is a vector of dimensionality
D%) of the image x (a vector of dimensionality D) within A with another vector
t? (called a template or a filter, or a kernel) with ¢ = 1,---,@Q, followed by
a non linearity; the dot product followed by the nonlinearity is indicated by a

a) b) c)

Figure 1: Basic motifs of the DCLNs networks described in the paper (note
that for present-day DCLNs all the filters in the motifs below are “convolu-
tional” across the whole image): a) A pooling module with linear rectifier as
nonlinearities. Subsampling after pooling is usual but is not mandatory; it is

suggested here by the graph which has two lines in and one out. Its output is
1

bol@) = X, | @, g9) + b1 or (3,(x) = (5, | (@, 99) +b11:)7)} = ¢y() =
mazgec| (z,gt?) + b?| . The dot products are denoted by the thin lines, the
nonlinearity by the black rectangle; the nodes (open circles) represent pooling
Zg or maxy. In the language of i-theory each open circle represents a com-
plex cell pooling the outputs of the associated simple cells — typically many of
them within each N\. FEach simple cell computes a nonlinear transformation
of the dot product between a patch of the image in the receptive field of the
complex cell and a template. There are several different types of simple cells
(different t9 per each complex cell). The N represents the receptive field of the
complex cell — the part of the (neural) image visible to the module (for trans-
lations this is also the pooling range). b) A degenerate pooling module (in a
1 x 1 convolution layer) of a DCLN network. The dot products are followed by
nonlinearities; the latter are denoted by the black rectangles. In this case there
is mo complex cell and no pooling but a set of Q types of simple cells, each rep-
resenting a different template (untransformed). Thus the operation performed
is |((z, gt?) + b?)|4,qg = 1,--- ,Q. c¢) shows the “unfolding” of b) in the case
of Q@ = 2 channels. The unit represented by the vertical line at the top is a
(linear) simple cell which combines linearly through the associated template the
two incoming inputs (x1,x2) = x to yield: (x,gt?) + by, q = 1,2. The t filter in
this case combines linearly the two different components of x.

black rectangle. The nonlinearity in most of today’s DCLNs is a linear rectifier:
thus | (z,t) 4+ b|+. These first two steps can be seen to roughly correspond to
the neural response of a so called simple cell [3, 4]. The complex cell performs
a pooling operation on the simple cells outputs, aggregating in a single output
the values of the different inner products that correspond to transformations of
the same template. Usually there are fewer “complex cells” than simple cells;
in other words, pooling is usually followed by subsampling. Complex cells use
mostly a max [4] (called maxout in the deep learning community) operation over
a set of transformations (see for instance [1]) g € G (such as z,y translations in
standard DCLNs) of templates (called weights) t:

1
rgneagl (z,gt) + 0+, (1)

As described in a later section the max can be computed as

u(l) = h(ﬁ S (e, gt))), (2)

geG

where h(z) = (zp)%, which is close to the max for large p.
An alternative pooling is provided by the average

1
— ,gt) + b|+. 3
geG
A more flexible alternative is the softmax pooling (which approximates the
max for “large” n) written as

s o+l W

aco g LA [z gt) + oyt

(which can be implemented by simple circuits of the lateral inhibition type
(see [5])) or as

e by the MEX (with appropriate parameter values, see Appendix)

£ 108 (5 o exlel (. 0) + b))

The set of operations — dot products, nonlinearity, pooling — is iterated at
each layer. Note that there are) channels with different ¢? for each input
and edge of the graph, where @ varies from layer to layer (in today’s DCLNs
Q = 3 for each image pixel in the first layer). If G contains only the identity,
the pooling is degenerate: a special case of degenerate pooling, called 1 x 1
convolution, is shown in Figure 1, b). The corresponding number of simple cells

Figure 2: A hierarchical network in which all the layers are pooling layers. The
“image” is at the bottom. The final layer may consist of a small array of cells
not just one.

Figure 3: Two layers of a hierarchical network: the first layer is a pooling layer,
the second is not (it could be a 1 x 1 convolutional layer).

is @, whereas in the case of non-degenerate “convolution”, the number of simple
cells within a A is |G| x Q, where |G| is the group cardinality.

Remarks

e In the field of function approximation the rectifier nonlinearity was called
ramp by Breiman [6].

e The collection of inner products of a given input with a template and its
transformations in i-theory corresponds to a so called convolutional layer
in DCLNs. More precisely, given a template ¢ and its transformations g;t,
where g; € G,i =1,--- |G| is a finite set of transformations (in DCLNs
the only transformations presently used are translations), each input x
is mapped to (x,g;t), g¢; € G. The values are hence processed via a
non linear activation function, e.g. a sigmoid (1 + e~*)71, or a rectifier
|s + b|l4 = max{—b, s} for s,b € R.

e Neither the max of a kernel nor the softmax of a kernel are kernels ([7]),
while the average is a kernel. However, one may use instead of the softmax
the numerator) (z, gt)" (or PO ef®90™) as a “proxy” for the maximum.
These expressions are called ([7]) softmazimal kernels.

e From the point of view of an implementation in terms of networks using
only sums and rectification, the following expression is interesting (see
Figure 4)

maxs (w1, T2) = o2 + (21 — 22)|+. (5)

Iteration of the expression provides max pooling for d inputs as

maz(xy, - ,xq) = maza(zq, (maze(xq_1, (- - (maza(ze,z1)---)) (6)

3 Main example: the sum-of-squares network

Suppose to choose ¢(z) = (b+ z)? as the nonlinearity acting on the dot product
z = (t,x) in each of the edges of a network such as in Figure 2. Assume, for
simplicity that there is no pooling. Then the output at the second layer can be
written as ¢(¢p(x)), or more explicitly being

(bz(x) — (<l‘,tﬂ> _ bi1)2
we can write

6;(2) = dj(d(@)) = Q_((w, ") = b™1)?37 —b*9)? (7)

%

X1+ X2 —xq 4

X2 = X1]+

_) X2Tx

X1 X3

Figure 4: Possible network module implementing of max(x1,x2).

where the indexes 1, 2 refers to the first and second layer.

It is easy to show (see for instance [8] and the work in Germany in the 70’s
on industrial OCR, see [9]) that the second layer can synthesize an arbitrary
second order polynomial — and the n'” layer an arbitrary 2n** order polyno-
mial — in the d variables that are components of = [8], provided there are a
sufficient number of linear combinations with weights that can be chosen (or
learned). Weierstrass theorem then ensures that the network can provide an
arbitrary good approximation of a continuous function of d variables on an in-
terval (see also [10, 8]). Each unit at layer ¢ can represent a specific quadratic
polynomial in the m variables of the previous layer. A polynomial of degree 2d
represented by a hierarchical network of depth d with m variables requires a flat,
h (2d+m—1)!

(m—1)!
the polynomial. The complexity of a shallow networks representing a specific
small complexity hierarchical polynomial is thus much larger. Similar observa-
tions with much more detail and with formal proofs can be found in an elegant
paper by Shalev-Shwartz [11]. Quadratic networks are very closely related to
sum-product nets studied by Bengio [12] who also reports the observation that
specific deep sum-product networks in general require equivalent shallow net-
works with an exponential number of units.

The kernel associated with ¢, K(z,y) = (1 + (z,y))? is a kernel and

one-layer representation wit units, each representing a monomial of

K(z,y) =|{t.a—y) | =|{t,z) - b

is also a kernel (see [13]). The reason that we use it as our main example is
that it is a a good proxy for several other hierarchical kernels, in particular
for the absolute value kernel (think about the similar “shape” of z* and |x)
that we discuss in the next section. To be precise: Y-, c;;| (t/,x) — | replaces
((t7,x) — b)? (where with subscripts we indicate elements of a vector and with
superscripts different vectors). Consider the particular “pyramidal” architecture
of Figure 5 with the square kernel, no convolution, 4 input variables x1, z2, 3, T4
at the bottom, 3 layers, no nonlinearity in the first layer (for simplicity): this

((x1 + xp + b))%ty + (X3 + x4 + bp)?t, +bo)? ts

(x1 + x5 + by)%ty (x3 + x4 + bp)?t,

Figure 5: A sum-of-squares network.

leads to hierarchical terms of the type
ta(be + t2(ba + x1 + 22)? + 1 (by + 73 + 74)?)°.

Note that this network corresponds to fewer units than a generic, flat imple-
mentation of the same degree i (a shallow network with a unit for each different
monomial). This is similar in spirit — but different in from — to the compact
calculations of a polynomial kernel that computes K (x, z) = (z,z)* without the
need of explicitly representing all the (quadratic) monomials.

Remarks

e Notice that like in all deep networks the quadratic network deals in each
layer with approximation of functions in one variable (the linear combi-
nation of the previous variables in the inputs). In spirit, this is the main
motivation for additive splines (see Appendix 8.2).

e The R-convolution of Haussler (see Appendix 8.2) use kernels that are
linear combinations of tensor products of possibly one dimensional kernels.
They can be defined on a variety of data structure. In particular, they
can be defined on the structure defined by the graph representing the
connectivity of the specific deep network.

e The square kernel has the property that the composition is equivalent to
the product, which is a kernel (this is strictly true for K(z,y) = <:c,y>2;
for polynomials the composition is is still a polynomial and a kernel).
Thus the compositions associated with a deep network using the square
nonlinearity are equivalent to linear combinations of (tensor) products.

e The iterated linear combination of tensor products corresponding to the
network graph can be represented iterating the construction of Haussler
(see Appendix 8.2) at each layer of the network:

D

K((E,y) = Z Kd(mdayd) (8)
x€ER~1(z),yeR~1(y) d=1

where Ky(z4,y4) = (xa, yd>2 and R is defined by the network graph. The
second layer can be obtained by observing that the corresponding kernel
is the square of sum of products of kernels and thus still a kernel. This
particular use the of Haussler construction works for the quadratic kernel
but not for the absolute value case since the composition of absolute value
kernels cannot be written as a product.

e The above may be related to the tensor rank argument (Hierarchical
Tucker vs CP rank) (see [14]). Note that the Tucker decomposition
of Hackbush and Kuhn [15] is inspired by the multiresolution spaces of
wavelets.

e If the pooling is a max, and not a sum, then some of the properties —
such as the kernel property — do not hold anymore. For the polynomial
softmax kernel however most of the proofs still hold.

4 Present-day DCLNs are hierarchical, additive
linear splines

This section is about the main observation of this paper. Consider an addi-
tive approximation scheme (see Appendix) in which a function of d variables is
approximated by an expression such as

d
flz) = Z bi(a?) 9)

where 2° is the i-th component of the input vector 2 and the ¢; are one-
dimensional spline approximations. For linear piecewise splines ¢;(z;) = > j Cij |zt~
bz |. Obviously such an approximation is not universal: for instance it cannot
approximate the function f(z,y) = xy. The classical way to deal with the
problem is to use tensor product splines (a particularly efficient special case of
which is tensor product of Gaussians — if we are willing to say that a Gaussian

Figure 6: A plot of the iterated absolute value function ¢(ci1¢(x)) + cadp(y)) =
4
71'T|CI|SC| + 02|y|| fOT‘ (61702) = (Oa 1)7 (17 0)7 (17 1)u (17 _1)

is a spline). The new alternative that we propose here is hierarchical additive
splines, which in the case of a 2-layers hierarchy has the form

K d
@) =36, éi("). (10)

and which can be clearly extended to an arbitrary depth. The intuition is
that in this way, it is possible to obtain approximation of a function of several
variables from functions of one variable because interaction terms such as zy in
a polynomial approximation of a function f(z,y) can be obtained from terms
such as elo9(@)+log(y)

We start with a lemma about the relation between linear rectifiers, which do
not correspond to a kernel, and absolute value, which is a kernel.

Lemma 1 Any given superposition of linear rectifiers Y, ¢;|x — b'i|+ with ¢, b
given, can be represented over a finite interval in terms of the absolute value ker-
nel with appropriate weights. Thus there exist ¢;,b" such that), cilz —b"*|4 =

Zici|:c—bi|.

The proof follows from the facts that a) the superpositions of ramps is a piece-
wiselinear function, b) piecewise linear functions can be represented in terms of
linear splines and c¢) the kernel corresponding to linear splines in one dimension
is the absolute value K(z,y) = |z — y|.

Now consider two layers in the network of Figure 2 in which we assume
degenerate pooling for simplicity of the argument. Because of Lemma 1, and
because weights and biases are arbitrary we assume that the the nonlinearity in
each edge is the absolute value. Under this assumption, unit j in the first layer,
before the non linearity, computes

Fx)y=> " d|{tx)y—b], (11)
i=1

where 2 and w are vectors and the t* are real numbers. Then the second layer
output can be calculated as in eq. (7) with the nonlinearity | - - - | instead of (-)2.

In the case of a network with two inputs x, y the effective output after pooling
at the first layer may be ¢ (x,y) = t1|x + by| + ta]y + bol, that is the linear
combination of two “absolute value” functions. At the second layer terms like
¢ (z,y) = |t1|z +b1| +ta|y +bo| 4+ bs| may appear, as shown in Figure 6 (where
by = by = b3 = 0). The output of a second layer still consists of hyperplanes,
since the layer is a kernel machine with an output which is always a piecewise
linear spline.

Networks implementing tensor product splines are universal in the sense that
they approximate any continuous function in an interval, given enough units.
Additive splines on linear combinations of the input variables of the form in eq.
(11) are also universal (use Theorem 3.1 in [16]). However additive splines on
the individual variables are not universal while hierarchical additive splines are:

Theorem Hierarchical additive splines networks are universal (on an inter-
val).

Proof sketch: We use Arnold’s and Kolmogorov proof of the converse of Hilbert’s
13th conjecture: a continuous function of two or more variables can be repre-
sented in terms of a two-layer network of one dimensional function. Informally

their result is as follows. Let f : R? — Rand z = (z?,...,2%) € R? and consider
2d+1 d
f@) =" 9> hiy(a)) (12)
i=1 j=1
where g;, h; j : R = R, Vi, j. The functions h; ; can be chosen to be univariate

and are independent of f. Further refinements of the theorem show that g; =

10

c;g, for ¢; € R. Let us use the result in the simple case of two variables:

5
flz,y) = Zgi(hi,l(x) + hi2(y))- (13)

The functions g and h; ; are not “nice” but are continuous and thus, given
arbitrary resources, can be approximated arbitrarily well by classical, one-
dimensional, additive splines (see Sprecher implementation of Kolmogorov solu-
tion). In a no-pooling network represented by a binary graph (such as in Figure
2) , the output of a node after the nonlinearity is a function of the two inputs
and can be represented by Equation 13 (this also shows that a RLU network
of depth d > n with n being the dimensionality of the input can approximate
arbitrarily well any continuous function).

Remarks

e One is naturally led to the idea that networks composed of PLS subnet-
works can approximate any reasonable network (sigmoidal, radial, etc.),
consistently with the idea that multiple layers networks are equivalent to
McCullogh-Pitts networks and to finite state machines (see [17, 18]).

e Related to the sketch of the proof of Theorem above here are a few addi-
tional comments. The Taylor series representation of |z+t| = /(z + t)? =

VG D7 = [/ + 17 i
ot =G =1 S e (9

and converges for || < 1. For a network of depth d the expansion above
can be reused to provide a series representation of the whole network valid
for a certain range of convergence depending on the parameters at each
layer. Appropriate renormalization operations at each layer may ensure
convergence of the representation for any input to a network containing
such operations.

The proof suggested in the main part of the section can be replaced by
the following argument. Recall that one-layer subnetworks can perform
piecewise linear spline approximation (PLS) of one-dimensional functions.
Then construct two-layers PLS network modules that approximate in the
first layer log(x) function and in the second layer the e function. With
these modules two-layers networks can represent

> 03 o). (15)

11

where the g; are powers of exponential and the h; ; are log with appropri-
ate coefficient, thus obtaining terms such as e'°9(#)+109(¥) In this way a
multilayer network can approximate a polynomial in d variables of arbi-
trary degree. Notice that in this proof the minimum number of required
hidden layers is two, though more layers may give more efficient represen-
tations for specific functions.

The proof of the universality of hierarchical additive linear splines requires
more than one hidden layer unlike the existing proofs about universality
of Gaussians and other functions (see [19] and [20]).

Approximating with additive splines the functions log(x) and e* makes it
in principle possible to extend the results of [14] from product networks
to the more usual networks of one-variable functions, such as ramps, in
current use.

The equivalence of compositions with products is lost in the case of the
absolute value kernel. It is thus impossible to use Haussler representation
and the implied equivalence with linear combinations of tensor products.

The equivalence can be recovered by approximating the absolute value
with its Taylor representation which, when truncated, corresponds to a
polynomial kernel. The approximation suggests that the behavior of the
absolute value is similar to the square and that a similar argument based
on HT decomposition may hold. Note however that the convergence do-
main depends on parameters at each layer.

A result related to Lemma 1 follows from an integral evaluation deals with
“uniform” linear combinations of ramps (see Figure 6):

Lemma 2 Consider the “feature” ¢(z) = ["_dw|(w(z —t))|4 and the

iteration of it p(c1dp(x —t) + cad(y — q)). The calculations provide ¢(x) =
2 4

T lw =t and ¢(crd(x — t) + c20(y — q)) = Tlealw — t| + coly — qll. The

calculation is recursive and can be used for layers of arbitrary depth.

If pooling is the average and the nonlinearity (synthesized from linear
rectifiers) is the absolute value then each layer of a DCLN is a kernel
machine.

Results indirectly related to the Lemma are due to Saul [21]. Also note
that specific choice of the weights can synthesize the absolute value from
linear rectifiers (| {t,z) — b] = |{t,x) — b|+ + | — {t,x) — b|s). In addi-
tion, sigmoids and Gaussian-like one-dimensional functions can also be
synthesized as linear combinations of ramps[13].

Notice that ¢(¢) is not a kernel though the kernel that describes the sim-
ilarity criterion induced by the features computed by the 2-layer network
can be written as K(z,y) = (¢ (z),¢?(y)).

12

e All kind of nonlinearities ¢(z) yield universality for networks of the form
flx) = Zf ci¢i({w;,). The key condition is that the nonlinearity cannot
be a polynomial [16]. Interestingly, this restriction disappears in hierar-
chical architectures as shown by the example of quadratic networks.

5 Why hierarchies

In i-theory the reasons for a hierarchy follow from the need to compute invariant
representations. They are

1. Optimization of local connections and optimal reuse of computational el-
ements. Despite the high number of synapses on each neuron it would
be impossible for a complex cell to pool information across all the simple
cells needed to cover an entire image, as needed by a single hidden layer
network..

2. Compositionality, wholes and parts. A hierarchical architecture provides
signatures of larger and larger patches of the image in terms of lower level
signatures. Because of this, it can access memory in a way that matches
naturally with the linguistic ability to describe a scene as a whole and as
a hierarchy of parts.

3. Approzimate factorization. In architectures such as the network of Figure
2, approximate invariance to transformations specific for an object class
can be learned and computed in different stages. Thus the computation of
invariant representations can, in some cases, be “factorized” into different
steps corresponding to different transformations.

This paper adds a few additional reasons for hierarchies:

e Asdescribed in section 6 the typical convolutional architecture which looks
like a hierarchical pyramid is likely to be an optimal way to approximate
signals that have certain symmetry properties related to shift and scale
invariance.

e Supervised learning of the coefficients of filters over channels for each input
and at each stage can be regarded as supervised PCA that helps reduce
dimensionality.

5.1 Exponential complexity of n-layers nets

The main argument can be inferred from the square kernel example, in the case
of the pyramidal architecture of Figure 2. The result is that multilayer repre-
sentations of additive one-dimensional approximations have a representations
of exponentially higher complexity if constrained to one layer. The argument [8]
is as follows

13

e assume that the following modules are available: square operation, linear
combinations with arbitrary coefficients. Then it is possible to compute
in one layer (square and linear combinations) all the individual monomial,
in n variables, such as z - y, z2...

e each of the monomial can be represented by a unit which can be weighted
appropriately in the next layer in order to approximate an arbitrary func-
tion

For the absolute value kernel, a very similar argument can be used for the
Taylor representation of the iterated network. Related results are Bengio’s [22]
bounds on the number of linear regions that a d layer network can generate
relative to a one layer network with the same number of units. A more powerful
approach, because it allows the use of classical results about sample complexity,
generalization error etc) is to characterize the capacity of such multilayer net-
works in terms of classical measures such as VC-dimension, Radamacher aver-
ages and Gaussian averages [23, 24, 11]. For the hierarchical quadratic networks
described in [11] (see section 4 there and also section 3 in this paper) a coarse
VC-dimension bound (assuming binary output for the network) is O(y(A + d))
where v is the number units per layer, A is the degree of the polynomial, d is
the dimensionality of the input space R?, whereas the VC-dimension of a one
layer is (dAJr!ﬁ)! which grows much more quickly with d and A. Also relevant here
is the work on SimNets [25] and related tensor analysis of their complexity[14].

It is amusing to notice that the above complexity observations apply to
(specific implementations of) the networks with linear rectifiers discussed in this
note because hierarchical additive splines networks can approximate multipliers,
squares, MEX (and other functions) at a complexity cost in terms of depth and
number of units which is usually a (small) multiplicative constant.

6 Theory and DCLNs: a summary

The body of previous work that we called i-theory is studying representations
for new images (not previously seen) that are selective and invariant to trans-
formations previously experienced (for different objects). The theory applies
to the HW modules in Figure 1 and to the hierarchical architecture of Figure
2. The theory suggests directly such an architecture as a natural alternative
to the single HW module, which we indicate with A, for the computation of
invariance. In particular i-theory can be used to characterize properties of con-
volutional /pooling layers in DCLNs. The output of the basic HW module,
corresponding to complex cell k, is

1

k — -

> oI gth)), k=1,..K, (16)

geqG

where h is a monotonic nonlinear function (often the identity). In today’s
DCLNs p*(I) = (ﬁ Sgea | (I gt*) %)%, which is close to the max for large p.

14

A similar output which we will consider in our analisys for the pooling layers is
uk(I) = ﬁ > gec | (I, gt") |+ i-theory shows that p* is invariant and selective
as much as desired depending on K if the nonlinearity 7 is appropriate and if i
is monotonic. The theory was developed for the unsupervised case but it applies
to the convolutional layers of DCLNs because of the hardwired convolution
there (the group G implicit in DCLNSs is the translation group in z,y). As a
side note, it suggests a possible extension to scale of the convolutional layers of
DCLNSs. The previous invariance and selectivity results of i-theory also apply to
the 1 x 1 convolutional layers in terms of selectivity (there is no transformation,
no pooling, no invariance) but without any useful insight. The invariance and
selectivity results can be used for the pooling layers in mixed networks such as
in Figure 3 but not for the nonpooling ones. More importantly, networks of the
type shown in Figure 2 are outside the scope of the theorems proved in earlier
i-theory papers (see Appendix 8.1.1).

The approach in this paper applies to supervised networks without pooling,
such as the case of Figure 2. Together with the previous invariance results,
this extended i-theory applies to supervised networks with mixed pooling and
non-pooling layers.

Thus this paper extends i-theory to supervised and non-pooling networks.
This extended theory can be applied to the current DCLNs architectures. It
also suggests other similar networks and several variations of them. For in-
stance, weight sharing does not need to be over the whole image: it can be
restricted to the pooling regions. The nonlinearity allowed are rather general
but must yield universal approximations (like ramps or cubic splines for hierar-
chical splines and ramps for one-step, non-hierarchical approximations, ideally,
of a one-dimensional pdf via the group average). An obvious alternative choice
is a Gaussian function instead of a ramp: the corresponding architecture is a
hierarchical Gaussian RBF network. The architecture of Figure 2, similar to a
binary tree, is almost implied by convolution, pooling and subsampling which
are a special case of it. It corresponds to a particular decomposition of the
computations represented by a function of several variables — in functions of
functions of subsets — which is optimal for signals that have certain symmetry
properties reflecting shift and scale invariance. A forthcoming paper will explore
the reasons for the claim that much of the power of the architecture of Figure
2 derives from the particular hierarchical combination of inputs variables and
is rather independent of the details of the nonlinear operations (whether linear
rectifiers or sigmoids or Gaussians).

Remarks

e The two main contributions of the original i-theory, before the extensions
of this paper, are:

— theorems on invariance and selectivity of pooling for transformations
belonging to a group and related results on approximative invariance
for non-group transformations

15

— “unsupervised” learning of invariance to transformations by memo-
rizing transformations of templates either directly or in the form of
PCs, because (z, gt) = <g*1x,t>.

The second contribution is potentially quite relevant especially for neuro-
science.

e Consider the invariant

,uk(l) = h(ﬁ Z 77(<I’ gtk>))’ k=1,..,K, (17)

geG

The property that p* is invariant and selective if h is monotonic is a direct
extension of Theorem 5 in [2].

6.1 Biological implications

There are several properties that follow from the theory here which are attractive
from the point of view of neuroscience. A main one is the robustness of the
results with respect to the choice of nonlinearities (linear rectifiers, sigmoids,
Gaussians etc.) and pooling (to yield either moments or pdf or equivalent
signatures).

An somewhat puzzling question arises in the context of neuroscience plau-
sibility about weight-sharing. A biological learning rule that enforces weight-
sharing across the visual field seems implausible. In the context of i-theory a
plausible alternative is to consider the problem of weight sharing only within a
complex cell receptive field. During development within the receptive field of
each complex cell the simple cells tuning may be due to Hebb-like plasticity.
There are then two possibilities: a) after development the simple cells tuning
is refined by supervised SGD in a non-shared way or b) after developments the
tuning of the simple cells does change but the weight vector of the complex cells
outputs at one position is tuned by SGD.

7 Discussion

The main observation of this note is that present-day DCLNs can be regarded
as hierarchical additive splines. This point of view establishes a connection with
classical approximation theory and may thereby open the door for additional
formal results and for extensions of the basic network architecture.

Connection with i-theory. Loosely speaking i-theory characterizes invariance
and associated selectivity obtained by convolutional layers. It explains how to
extend the convolutional stage to other transformations beyond translation.
I-theory suggests why hierarchies are desirable for stage-by-stage invariance.
The non-convolutional layers may be characterized by formal results within the
framework introduced here — of hierarchical additive splines.

16

Tacit assumption: stochastic gradient descent works. Throughout this note,
we discuss the potential properties of multilayer networks, that is the properties
they have with the “appropriate” sets of weights. The assumption we make
is therefore that training using greedy SGD on very large sets of labeled data,
can find the “appropriate sets of weights”. Characterizing the reasons of the
success of SGD in training DCLNs and its generalization properties is probably
the second main problem, together with the problem of the properties of the
architecture which is the subject of this note.

A model of universal neural network computation. In the traditional “dig-
ital” model of computation, universality means the capability of running any
program that is computable by a Turing machine. Concepts such as polyno-
mial vs non-polynomial complexity emerge from this point of view. For neural
networks the model of computations that seems to take form now is closely re-
lated to function approximation. Here universality may be defined in terms of
universal approximation of a function of n variables (the inputs). Appropriate
definitions of complexity may need refinements beyond existing constructs such
as stability and covering numbers to include networks depth, number of units
and local connectivity (eg size of pooling regions).

8 Appendices

8.1 Kernels and features

Any set of features such as

bep(z) = | (2, 9t) + b|4

is associated to the kernel

Ko(z,2') = ¢" (z)p(a') = / db dt | (t,) +bl4| (t,2') +]y = > ¢ (2)¢(2')
tb

where the [reduces to the finite sum Y, , ¢7 (z)¢(2’) for finite networks. If
the sum is finite, the kernel is always deﬁried; otherwise its existence depends
on the convergence of the sum or the existence of the integral.

Features and kernels, when they are well defined, are equivalent. One has to
be careful, however, about what this means, especially in the case of multilayer
networks.

Suppose the output of a network is a set of features ®;(x) for each input
2. This the common situation with a DCLN. A kernel that measure similari-
ties between the input x and a stored y can be defined using the set of features
3 0;(2)®;(y) = K(x,y) irrespectively of how the features were computed. Alter-
natively the network could already provide as an output the similarity K (z,y)
between input x and a stored y.

17

Remark

We briefly discuss here the relation between units in a network, features and
kernels. We begin by noticing that, because of the generalization to virtual cen-
ters (not corresponding to data point), there is quite a bit of flexibility in how
to interpret a network. What I mean is the following. In the classical definition
a shift invariant kernel such as the absolute value K(z,y) = |z — y| corresponds
to features that are Fourier components. In the example of linear rectifiers we
can interpret | (t,x) + b|+ as a feature (for a specific ¢,b). However I can also
consider the linear combination |(t,z) + y|+ + | — {t,2) — y|4| = |z — y| as a
virtual unit computing the kernel similarity computation for the absolute value.

8.1.1 Invariance, convolution and selectivity

In the following we summarize the key steps of [26] in proving that HW modules
are kernel machines:

1. The feature map
¢(x,t,b) = | (t,x) + b|+

(that can be associated to the output of a simple cell, or the basic compu-
tational unit of a deep learning architecture) can also be seen as a kernel
in itself. The kernel can be a universal kernel. The feature ¢ leads to a
kernel

Ko(z,2') = ¢ (2)p(a’) = / db dt | (t,z) + Bl {t.2') + bl

which is a universal kernel being a kernel mean embedding (w.r.t. ¢,b, see
[27]) of the a product of universal kernels.

2. If we explicitly introduce a group of transformations acting on the feature
map input i.e. ¢(z,g,t,b) = |{gt,x) + b|+ the associated kernel can be
written as

K(z,2') = /dgdg’/dtdb|<gt,x)+b|+|<g’t,x’>+b|+

= /dgdg’Ko(:c,g,g’)-

K (x,2') is the group average of Ky (see [28]) and can be seen as the mean
kernel embedding of Ky (w.r.t. g,g’, see [27]).

3. The kernel K is invariant and, if G is compact, selective i.e.

K(z,2')=1 & z~1a'.

The invariance follows from the fact that any G—group average function
is invariant to G transformations. Selectivity follows from the fact that K
a universal kernel being a kernel mean embedding of Ky which is assumed
to be universal (see [27]).

18

Remark 1. If the distribution of the templates t follows a gaussian law the
kernel Ko, with an opportune change of variable, can be seen as a particular
case of the nth order arc-cosine kernel in [21] for n = 1.

8.2 Additive and Tensor Product Splines

Additive and tensor product splines are two alternatives to radial kernels for
multidimensional function approximation. It is well known that the three tech-
niques follow from classical Tikhonov regularization and correspond to one-
hidden layer networks with either the square loss or the SVM loss.

I recall the extension of classical splines approximation techniques to multi-
dimensional functions. The setup is due to Jones et al. (1995) [13].

8.2.1 Tensor product splines

The best-known multivariate extension of one-dimensional splines is based on
the use of radial kernels such as the Gaussian or the multiquadric radial basis
function. An alternative to choosing a radial function is a tensor product type
of basis function, that is a function of the form

K (x) = I k(x;)

where x; is the j-th coordinate of the vector « and k(x) is the inverse Fourier
transform associated with a Tikhonov stabilizer (see [13]).

We notice that the choice of the Gaussian basis function for k(x) leads to a
Gaussian radial approximation scheme with K (x) = ell=ll®,

8.2.2 Additive splines

Additive approximation schemes can also be derived in the framework of regu-
larization theory. With additive approximation we mean an approximation of
the form

d
fl@) =) fula™) (18)
p=1

where z# is the p-th component of the input vector x and the f, are one-
dimensional functions that will be defined as the additive components of f (from
now on Greek letter indices will be used in association with components of the
input vectors). Additive models are well known in statistics (at least since Stone,
1985) and can be considered as a generalization of linear models. They are ap-
pealing because, being essentially a superposition of one-dimensional functions,
they have a low complexity, and they share with linear models the feature that
the effects of the different variables can be examined separately. The result-
ing scheme is very similar to Projection Pursuit Regression. We refer to [13] for
references and discussion of how such approximations follow from regularization.

19

Girosi et al. [13] derive an approximation scheme of the form (with 4 corre-
sponding to spline knots — which are free parameters found during learning as in
free knots splines - and p corresponding to new variables as linear combinations
of the original components of x):

d n
fla) =) Y Kt a) —b) =YY dE({a)). (19)
p=11i=1 p=1i=1

Note that the above can be called spline only with a stretch of the imagina-
tion: not only the w,, but also the t* depend on the data in a very nonlinear way.
In particular, the t* may not correspond at all to actual data point. The approx-
imation could be called ridge approximation and is related to projection pursuit.
When the basis function K is the absolute value that is K (z — y) = |« — y| the

network implements piecewise linear splines.

8.3 Networks and R-Convolution Kernels

Suppose that € X is an image (more in general a signal) composed of patches
xz' .-, 2P where 2¢ € X? for 1 < d < D. Following Haussler we assume
that X, X! ... X are separable metric spaces and in particular that they are
countable finite sets, such as pixels. The patches are implicitly defined by the
architecture of the first layer of the networks we will discuss (see Fig 2). In
particular the patches of the image are defined by the receptive fields of the
first layer complex cells.

We represent the property "z!,--- 2P are patches of 2”7 by a relation R
on the set X x X1, ... XD where R(z!, -, 2P, x) is true if z!,--- 2P are
parts of z?. We denote z = (x!,--- ,2P) and R(z,z) = R(z!,--- ,27,z). Let
R (z) =z : R(5,8).

Our main example for R consists of the following: !, --- 2" are an ordered
set of square patches with n? pixels composing without overlap the image z
which has N2 = Dn? pixels. This relation can be iterated composing larger
parts defined by the higher layers of the network of Figure 2. Suppose z,y € X
and for the decomposition we have defined x = z!,--- , 2P are the patches of
z and y = y',--- ,yP are the corresponding patches of y. Suppose now that
for each 1 < d < D there is a kernel Kq(2¢,y?) between the patch z? and the
patch y?. We then define the kernel K measuring the similarity between z and
y as the generalized convolution

D

D
K(‘T7y) = Z H Kd(xdayd) (20)

xER~1(z),yeR 1 (y) d=1

This defines a symmetric function on S x S where S = z: R~!(z) is not
empty. The R-convolution of Ki,--- , Kp is defined as the zero-extension of K
to X x X. The zero-extension of K from S x .S to X x X is obtained by setting
K (z,y) = 0 either z or y is not in S. The following theorem holds:

Theorem If K1,--- , Kp are kernels on X! x X'x,---, XP x XP | respectively,

20

and R is a finite relation on X x X',---, X then K defined in Equation 8 is
a kernel on X x X.

8.4 SimNets and Mex

Mex is a generalization of the pooling function. From [25] eq. 1 it is defined as:

1 1 —
Mewieiye) = ¢ log (5 ZeXp(fcﬂ)
i=1
We have
Mex(ey.) 5 Mawi(ci)
€T ({c;},€) fj) eani(c;)
Mea:({ci})g) £_>—_DO> Mini(ci).

We can also choose values of £ in between the ones above, the interpretation is
less obvious.

Acknowledgment

This work was supported by the Center for Brains, Minds and Machines (CBMM),
funded by NSF STC award CCF 1231216.

References

[1] F. Anselmi, J. Z. Leibo, L. Rosasco, J. Mutch, A. Tacchetti, and T. Poggio,
“Unsupervised learning of invariant representations,” Theoretical Computer
Science, 2015.

[2] F. Anselmi, L. Rosasco, and T. Poggio, “On invariance and selectivity in
representation learning,” arXiv:1503.05938 and CBMM memo n 29, 2015.

[3] D. Hubel and T. Wiesel, “Receptive fields, binocular interaction and func-
tional architecture in the cat’s visual cortex,” The Journal of Physiology,
vol. 160, p. 106, 1962.

[4] M. Riesenhuber and T. Poggio, “Hierarchical models of object recognition,”
Nature Neuroscience, vol. 3,11, 2000.

[5] M. Kouh and T. Poggio, “A canonical neural circuit for cortical nonlinear
operations,” Neural computation, vol. 20, no. 6, pp. 1427-1451, 2008.

[6] L. Breiman, “Hinging hyperplanes for regression, classification, and func-
tion approximation,” Tech. Rep. 324, Department of Statistics University
of California Berkeley, California 94720, 1991.

21

[7]

8]

[10]

[11]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

T. Gaertner, KERNELS FOR STRUCTURED DATA. Worls Scientific,
2008.

B. B. Moore and T. Poggio, “Representations properties of multilayer feed-
forward networks,” Abstracts of the First annual INNS meeting, vol. 320,
p- 502, 1998.

J. Schuermann, N. Bartneck, T. Bayer, J. Franke, E. Mandler, and
M. Oberlaender, “Document analysis from pixels to contents,” Proceed-
ings of the IEEE, vol. 80, pp. 1101-1119, 1992.

T. Poggio, “On optimal nonlinear associative recall,” Biological Cybernet-
ics, vol. 19, pp. 201-209, 1975.

R. Livni, S. Shalev-Shwartz, and O. Shamir, “A provably efficient algorithm
for training deep networks,” CoRR, vol. abs/1304.7045, 2013.

O. Delalleau and Y. Bengio, “Shallow vs. deep sum-product networks,”
in Advances in Neural Information Processing Systems 24: 25th Annual
Conference on Neural Information Processing Systems 2011. Proceedings
of a meeting held 12-1/ December 2011, Granada, Spain., pp. 666—674,
2011.

F. Girosi, M. Jones, and T. Poggio, “Regularization theory and neural
networks architectures,” Neural Computation, vol. 7, pp. 219-269, 1995.

N. Cohen, O. Sharir, and A. Shashua, “On the expressive power of deep
learning: a tensor analysis,” CoRR, vol. abs/1509.0500, 2015.

H. W. and S. Kuhn, “A new scheme for the tensor representation,” J.
Fourier Anal. Appl., vol. 15, no. 5, pp. 706-722, 2009.

A. Pinkus, “Approximation theory of the mlp model in neural networks,”
Acta Numerica, pp. 143-195, 1999.

T. Poggio, “What if....,” CBMM Views and Reviews, 2015.

S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning:
From Theory to Algorithms. Cambridge eBooks, 2014.

F. Girosi and T. Poggio, “Networks and the best approximation property,”
Biological Cybernetics, vol. 63, pp. 169-176, 1990.

G. Cybenko, “Approximation by a superpositions of a sigmoidal function,”
Math. Control Signal System, vol. 2, pp. 303-314, 1989.

Y. Cho and L. K. Saul, “Kernel methods for deep learning,” in Advances
in Neural Information Processing Systems 22 (Y. Bengio, D. Schuurmans,
J. Lafferty, C. Williams, and A. Culotta, eds.), pp. 342-350, Curran Asso-
ciates, Inc., 2009.

22

[22]

23]

[28]

R. Montufar, G. F.and Pascanu, K. Cho, and Y. Bengio, “On the number
of linear regions of deep neural networks,” Advances in Neural Information
Processing Systems, vol. 27, pp. 2924-2932, 2014.

M. Anthony and P. Bartlett, Neural Network Learning - Theoretical Foun-
dations. Cambridge University Press, 2002.

A. Maurer, “A chain rule for the expected suprema of gaussian processes,”
in ALT, 2014.

N. Cohen and A. Shashua, “Simnets: A generalization of convolutional
networks,” CoRR, vol. abs/1410.0781, 2014.

L. Rosasco and T. Poggio, “Convolutional layers build invariant and selec-
tive reproducing kernels,” CBMM Memo, in preparation, 2015.

B. K. Sriperumbudur, A. Gretton, K. Fukumizu, B. Scholkopf, and G. R. G.
Lanckriet, “Hilbert space embeddings and metrics on probability mea-
sures,” Journal of Machine Learning Research, vol. 11, pp. 1517-1561,
2010.

B. Haasdonk and H. Burkhardt, “Invariant kernel functions for pattern
analysis and machine learning,” Mach. Learn., vol. 68, pp. 35-61, July
2007.

23

