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Abstract

Deep learning networks with convolution, pooling and subsampling are
a special case of hierarchical architectures, which can be represented by
trees (such as binary trees). Hierarchical as well as shallow networks can
approximate functions of several variables, in particular those that are
compositions of low dimensional functions. We show that the power of a
deep network architecture with respect to a shallow network is rather inde-
pendent of the specific nonlinear operations in the network and depends
instead on the the behavior of the VC-dimension. A shallow network
can approximate compositional functions with the same error of a deep
network but at the cost of a VC-dimension that is exponential instead
than quadratic in the dimensionality of the function. To complete the
argument we argue that there exist visual computations that are intrinsi-
cally compositional. In particular, we prove that recognition invariant to
translation cannot be computed by shallow networks in the presence of
clutter. Finally, a general framework that includes the compositional case
is sketched. The key condition that allows tall, thin networks to be nicer
that short, fat networks is that the target input-output function must be
sparse in a certain technical sense.

1 Introduction

We attempt to organize a few classic recent observations on approximation
properties of hierarchical networks in a coherent framework that extend i-theory
[1] to hierarchical architectures similar to Deep Learning Networks (DLN) and
to supervised learning. In particular, we connect computational hierarchies to
properties of image statistics ultimately dependent on the existence of objects —
local clusters of surfaces with similar physical properties — and their distribution
in images.
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Figure 1: a) A shallow universal network (here the /\ denotes a one-hidden layer
network). The “image” is at the bottom. b) A deep hierarchical network.

2 Summary of argument

The main goal of this paper is to answer the question: why deep networks
instead of shallow networks (with just one-hidden layer)? The claim here is that
hierarchical networks are a more efficient approximation of the computations
that need to be performed on images. The argument of the paper consider the
shallow and deep networks of Figure 1. Both types of networks use the same
small set of operations — dot products, linear combinations, a fixed nonlinear
function of one variable — combining the motifs of Figure 2 a,b,c. Each A
combines over at least two inputs, usually more. The logic is as follows.

e Both shallow (a) and deep (b) networks of Figure 1 are universal, that is
they can approximate arbitrarily well any continuous function of d vari-
ables on a bounded domain.

e We show that the approximation of functions with a compositional struc-
ture — such as f(fﬂl, s 7l'd) = hl(hg s (hj(h“(:cl,xg), hig(fﬂg,.’,hl)), s ))
— can be achieved with the same degree of accuracy by deep and shallow
networks but that the VC-dimension of the deep networks is in general
much smaller than the VC-dimension of the equivalent shallow network
(the VC-dimension provides bounds for sample complexity). It is intuitive
that a hierarchical network matching the structure of a compositional func-
tion should be “better” at approximating it than a generic shallow network
but universality of shallow networks makes the statement less than obvi-
ous. Our result makes clear that the intuition is indeed correct and shows
that the VC dimension is the appropriate measure to consider.



e Why are compositional functions important? We discuss how some basic
visual recognition tasks require compositional functions. More in general,
and less formally, it can be argued that symmetry properties of image
statistics require hierarchies such as Figure 1. In particular, hierarchi-
cal functions are effectively required by the statistics of natural images
consisting of several overlapping objects, that is objects in clutter, rather
than a single object against an homeogeneous background. In addition,
they are more tolerant to small deformations induced by the compositional
structure of objects and parts.

e There are additional less fundamental, reasons for the outperformance of
parts of current very deep networks (trained on residuals) that do not in-
volve compositions of lower dimensional functions. We introduce and dis-
cuss the conjecture that, in analogy with quadratic networks, composition
of ridge function approximations may have a higher rate of convergence
that their additive combination.

3 Previous work

There are several papers addressing the question of why hierarchies. Needless
to say none of them provides a full answer to the question. Interesting work
that is not directly relevant for the results of this paper is [2] for an estimation
of number of linear regions that a network can in principle produce and [3] for
discussing Sum-Product networks, which are equivalent to the polynomial net-
works of [4] and [5]. The latter paper, together with the function approximation
results reviewed in [6], are directly relevant to this paper. We will discuss with
more details the previous work in an eventual journal version of this paper.

4 Network components

We consider in this paper both shallow and deep network architectures, as shown
in Figure 1. As we mentioned, both types of networks use the same small set
of operations — dot products, linear combinations, a fixed nonlinear function
of one variable. We describe now in detail the operations implemented in our
architectures and mention the differences with current DCLNs.

Standard nodes A node consists of a neuron which computes

|<Z‘,t>+b|+, (1)

where t is the vector of weights on the incoming input z. Both ¢ and the real
number b are parameters tuned by learning. Notice that the linear combination
of r such nodes (at the next layer) Y._; ¢;|((x,t;) + b;)|+ corresponds to ridge
approximation which is universal.

A convolution node is a neuron that computes

| (2, git) + bl (2)



where g;t is the vector ¢ transformed by ¢g; € G.
Pooling according to i-theory corresponds to a node averaging several neurons
according to

Z‘<x;git>+bn|+vn:1a"'aN (3)
i
A max-pooling node combines several convolution units according to

max;| (z, git) + b|+. (4)
Notice that replacing the ramp nonlinearity — or the equivalent absolute value
— with a square one obtains from the nodes above the corresponding nodes of a
quadratic network [7].

Remark Combining several of the above units can give different types of nodes.
For instance we may assume as the basic node a set of K neurons sharing the
same weights ¢ but with different bias terms b providing

K
D ekl (@ot) + byl (5)
k=1

A convolution node now computes Y, cx|((x, git) + bx)|4, whereas a max-
pooling node computes max; Y, cx|((x, git) + b)|+-

Notice that replacing the ramp nonlinearity above, or the equivalent absolute
value, with a square yields quadratic splines. The absolute value or the ramp
give piecewise linear splines. In both cases the splines are free-knots splines.
Sometime we assume “spline” nodes — for instance when we use Kolmogorov
theorem in [7]. Of course in a multilayer network spline nodes can be synthesized
from standard nodes by appropriate choices of the parameters and a sufficient
number of neurons. In practice, however, this assumption may not be realizable
by the learning procedure.

5 Why hierarchies

5.1 Depth is not needed for universality

We consider classic shallow and deep networks, see Figures 1, defined by a set
of basic operations (motifs), see Figure 2.

We interpret the networks in Figure 1 as two ways of approximating a func-
tion of d variables. The shallow network approximates f(z1,---,z4) in one
hidden layer with nodes of the type >, cxh({(z,w") + by;), where the h are
nonlinear functions such as polynomial functions or linear rectifiers h(z) = |z|+.
The network on the right approximates a function such as f(z1,--- ,2s) using
a linear combination of terms such as

h3(h21(h11($1, fz), h12($37 554))7 hzz(h11($5, 336), h12($7, CUS))) (6)
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Figure 2: Basic motifs of the DLNs networks described in the paper. We de-
note x as the input vector to a module; each component x;, of the vector x
represents the value of channel q at position i. Templates (called filters) are
also vectors: the q-th template t9 is a vector with components over positions
and channels. In pooling operations g;t, denotes the transformation of tem-
plate t9 (in the case of the translation group g; shifts t, to location i). The
basic operation is the dot product (x,gt?) involving spatial and channel com-
ponents. a) A 1 x 1 “convolutional” module performs dot products (x, gt?) be-
tween the input vector x and Q) filter t1; the scalar products are here with tem-
plate vectors that are defined at a single spatial position. b) The dot product
is followed by a nonlinearity (indicated by the black rectangle) which is typi-
cally a ramp. The overall operation performed is | (x,t?) + 2| ,g = 1,---,Q
or >, cl (w,t9) + bF|1, g = 1,---,Q. ¢) A pooling operation denoted by the
node (open circle) computes Zg or mazx, over its inputs in the pooling range
(which includes at least two inputs as in the figure). These motifs can composed
in various ways to create hierarchical networks that are variations of the binary
tree of the Figure 1. For instance d) shows a typical maz-pooling module per-
forming hq(x) = mazgeq| (z,gt?) + b|. In the language of i-theory an open
circle represents a set of complex cells pooling the outputs of the associated sim-
ple cells — typically many of them within each \. Each simple cell computes a
nonlinear transformation of the dot product between a patch of the image in the
receptive field of the complex cell and a template. There are several different
types of simple cells (different t9 per each complex cell). The )\ represents the
receptive field of the complex cell — the part of the (neural) image visible to the
module (for translations this is also the pooling range). Subsampling after pool-
ing is usual. e) A “pooling” module with subsampling in which different input
channels at different positions are combined linearly into a set of channels by
dot products with weight vectors. In all the insets in this figure nodes consist of
several neurons.



where terms such as hq1(x1,x2) correspond to the A pooling module (here we
consider the extreme case of a module with just two inputs 21 and z). Our main
example of a compositional function is the binary tree of the Figure 1 but other
types of tree can be analyzed in a very similar way. The main property of the
two types of networks — shallow and deep — is that they can both approximate
arbitrarily well continuous functions on a compact domain. The following result
summarizes old work (see [6] for a review) and recent observations in [7].

Theorem 1. Shallow, one-hidden layer networks with a nonlinearity which is
not a polynomial are universal. Deep networks with a nonlinearity that could
also be a polynomial are universal.

Thus universality of the networks is robust with respect to a broad spectrum of
nonlinearities.

Examples: Examples of universal one-hidden layer network are Gaussian RBF
or HBF [7], polynomial nonlinearities such as squares [5] and additive, piecewise
linear splines [7]. The latter correspond to Deep Learning Networks with linear
rectifiers.

Approximation properties can be related to the notion of connectivity of
a network. Connectivity is a key property in network computations. Local
processing may be a key constraint also in neuroscience. One of the natural
measures of connectivity that can be introduced is the order of a node defined
as the number of its distinct inputs. The order of a network is then the maximum
order amonyg its nodes. The term order dates back to the Perceptron book ([8],
see also [9]). From the previous observations on Figure 1 b), it follows that a
hierarchical network of order at least 2 can be universal.

Remarks.

e The case of quadratic polynomial approximation considered in [4, 5] can
be extended to the case of quadratic splines (spline interpolation is usually
better than polynomial interpolation because it yields similar results to
interpolating with higher degree polynomials while avoiding instability).
I recall that linear piecewise splines have the form }. ¢; ;| (z,w;) — bl
whereas quadratic splines are >, ¢; ; ((z,w;) — b/)2. The output of a sec-
ond layer still consists of hyperplanes in the case of linear splines and of
quadratic surfaces in the case of quadratic splines.

e Each node of the network of Figure 1 can approximate a HBF unit with
inputs x1, x2 using a fixed number of units, such as linear rectifiers. Simi-
larly, a binary tree with additive spline nodes can approximate a universal
one hidden layer Gaussian HBF. The same is true for the corresponding
graphic notation of Figure 2.



e An attractive property from the point of view of neuroscience is the robust-
ness of the approximation results with respect to the choice of nonlineari-
ties (linear rectifiers, sigmoids, Gaussians etc.) and pooling (to yield either
moments, probability density functions, or signatures that are equivalent
to them).

e The Hierarchical Tucker (HT) factorization, which maps a tensor into a
binary tree, describe function approximation by tensor products [10, 11].

5.1.1 Complexities of depth

Depth beyond one hidden layer is not required for universal approximation. Can
then depth provide low complexity approximation of functions? A widespread
belief is that good approximation in shallow networks requires a huge number
of units while deep networks can achieve it with much fewer units. As a gen-
eral statement, irrespectively of the specific elements and architecture of the
networks, this is not true. The situation is as follows.

e One-hidden layer networks corresponding to additive linear spline approx-
imate a function of d variables f on the unit cube as f(x) = Zf hi(x?),
where z¢ is the i-th component of the vector x and h;(x?) = > Cij |zt — b7
are not universal (not even for general h;(z%)) [7].

e One-hidden layer networks corresponding to ridge approximations f(x) =
>o¢ hi({(w’, x)) are universal approximators. Similarly to the case of poly-
nomial approximation there is a lower bound in their degree of approxi-
mation: the number of units r increases with the inverse of the error, that
isr > Ce_%, where m is related to the smoothness of the function to
be approximated [6].

e Two-hidden layers networks can approximate any continuous function on
a bounded domain with any given error € using a fixed total number of
units, that is 7 = 8d + 4; the nonlinearity o, however, depends on ¢ (but
not on f) and is very complex; more precisely the following theorem holds:

Theorem 2 (Theorem 7.1 in [6]). There exists an activation function o
which is C*, strictly increasing with the property that, for any f € C[0,1]¢,
x €0, 1]d, and € > 0 there ewists constants d;, c; j,w; j,b; 5 and 7; such

that:
4d+3 2d+1 o
[f(@) = dio( D ciglo((w', @) +big) + 7)) <e. (7)
i=1 =1
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Figure 3: A network representing Pinkus’ approximation based on Kolmogorov
theorem.

The corresponding network is shown in Figure 3. As remarked by Pinkus [6]
the situation above suggests that the number of units is not a good measure of
complexity. It seems natural that in terms of learning theory the VC-dimension
(for binary output) is a more relevant quantity. The VC-dimension of multilayer
networks can be characterized in terms of number of computations. A simple
result is the following [12]: any binary function class in a euclidean space, which
is parameterized by at most n parameters and such that each function can be
specified using at most t addition, multiplication, and comparison operations,
has VC-dimension at most O(nt).

The above results suggests two observations, noting that a ramp function
requires a simple comparison whereas Pinkus’ ¢ requires a very large number
of operations:

Conjecture 1. The VC dimension of a network of units with Pinkus nonlin-
earity o is growing to infinite with decreasing €.

Theorem 3. The VC dimension of a network of r units, each with a ramp
nonlinearity (linear rectifier) performing | (x,w) — b| with d + 1 parameters (d
is the dimensionality of w) has VC dimension O(r?(d + 2)?).

Remark. As mentioned in [12] the characterization of the VC-dimension of
a deep networks in terms of its operations has interesting consequences. If
we consider a model of computing that only allows the standard arithmetic
operations and comparisons with real numbers, then any class consisting of
functions that are specified by a finite number of parameters can be computed
in finite time on such a computer has finite VC-dimension. Furthermore, if we
consider a sequence of function classes computed in this way, with increasing



dimension d of the input domain (X = R?), and with the number of parameters
and the computation time growing only polynomially with d, then the VC-
dimension also grows only polynomially. It follows that any class containing
functions computable in time polynomial in the input dimension d has VC-
dimension polynomial in d. This implies that the sample complexity grows only
polynomially with the input dimension.

5.2 Deep networks can approximate compositional func-
tions with lower VC-dimension than shallow ones

It is natural, but not obvious, to think that hierarchical compositions of func-
tions such as

f(x1,- -+ x8) = ha(ha1(hi1 (21, 2), hi2(23, 24)), haa(h13 (5, T6), h1a(z7, 8)))

(8)
are approximated more efficiently by deep than by shallow networks. We spell
out here the rules of the game, in our comparison of shallow vs deep networks,
even if they are obvious from the context. In general, we assume that the shallow
networks do not have any structural information on the function to be learned
(for instance its compositional structure). Deep networks on the other hand
contain such prior information in their hierarchy. As it is natural to expect, this
may lead to a decrease in the sample complexity.

Both shallow and deep representations can be invariant to group transforma-
tions of the input as shown in i-theory [1] and invariance is expected to decrease
their complexity, that is the VC-dimension. Since we are interested in the com-
parison of shallow vs deep architectures, here we consider the generic case - no
invariance is assumed (for simplicity).

The assumption that hierarchical functions are approximated more efficiently
by deep than by shallow networks is known to be true in an important special
case. For the hierarchical quadratic networks described in [5] (see section 4
there and [7]) a VC-dimension bound is much lower than for the corresponding
shallow network. To fix ideas consider a function of d variables. Suppose that
the function has the compositional structure of a binary tree. In this case
[ =log, d and the number v of the nodes ¢g( that is A) isv=d — 1.

In the case of a binary tree as in Figure 4 with quadratic nonlinearities and
d — 1 units, the VC-dimension according to Bartlett bound is O(5(d — 1)?).

On the other hand, the VC-dimension of shallow network, with hidden layer
units each corresponding to monomials, is O((*4*)), where A = 2! = d is
the degree of the polynomial, d is the dimensionality of the input. The VC-
dimension O((zdd)) ~ \;% grows much more quickly with d. This suggests that
a deep network can indeed generalize better than directly learning high-degree
polynomials from a dictionary of all monomials. For the square loss, instead
of binary classification, our estimate of the VC bound provides a similar upper
bound for the V, dimension [12] .
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Figure 4: A sum-of-squares binary tree network in four variables.

We would like to show that similar results hold for networks in which the
quadratic nonlinearity is replaced by the absolute value or, equivalently [7], by
ramps. Consider again functions of d variables of the form of Equation 8 where
the nodes h are ridge functions (in particular they may be additive piecewise
linear splines). As in the quadratic case, let us assume that this is the class of
functions that performs the desired computation.

To compute the associated VC bound the following lemma is useful.

Lemma 1. A binary tree network composed of K N\ motifs (each computing
>"gi((x,w")) has total VC-dimension bounded by K?V), where Vp = 2r? is
the VC-dimension of the binary )\ motif computed according to Bartlett’s bound.

Suppose we want to approximate the function computed by a deep network
by using a shallow network. Its VC dimension will depend on the number of
parameters and units in the network as VCiotar > (2r)(r)VC. The number r
depends on the error € according to the following upper bound given in Theorem
6.2 in [6] !

e<Or 1 = COr T (9)
Thus r > (%)d*1 which grows quickly with increasing dimension d and accuracy
(1). We have thus shown

Theorem 4. Deep networks can implement functions in a specific class of com-
positional functions with a much lower VC dimension (and therefore sample
complexity) than a shallow network approximating the same functions. The VC

IThe bound is obtained taking m = 1 in Theorem 6.2 in [6], since m = 1 corresponds to
piecewise linear splines).

10
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Figure 5: a) A shallow universal network in 8 variables. b) A binary tree hierar-
chical network in 8 variables. The first one can approxrimate a generic function
flxy,--- ,xg) ; the second represents functions of the specific compositional form
f(zy, - y28) = hg(hai(hii(21, 22), hi2(x3, 24)), hoz(hi3 (w5, 6), h1a(27, 78)))-
Since both representation can be invariant to group transformations of the input
we consider the generic case - no invariance is assumed here - since we are
interested in the comparison of shallow vs deep architecture. If additional prop-
erties of position and scale invariance of the probability distribution of images
hold then z'mply hll = h12 = h13 = h14 and h21 = h22 and h11 X h21 0.8 h3.
These constraints (the first one corresponds to weigh sharing in DCLNNs) which
are usually valid for vision further reduce substantially the VC-dimension of the
network.

dimension of the approzimating shallow network grows as O((%)d_l) where €
is the desired approximation error and d is the dimensionality of the function
domain.

The theorem reflects the fact that the units composing a hierarchical net-
works have a smaller number of inputs (two in the binary tree case) that the
global units of the shallow network. We conjecture therefore that the order (in
the perceptron sense defined earlier) of a hierarchical network is the key param-
eter in determining its sample complexity. As a consequence, increasing depth
to achieve lower order may be a useful design principle.

Another way to compare shallow with deep networks is to assume that there
is an unknown compositional function that performs the desired computation.
It is then possible to learn from examples an empirical approximation of it
it with a hierarchical network and compare the latter with the approximation
obtained from a shallow network. We set the complexity of both network in
such a way that they obtain the same degree of approximation. We also use the
same nonlinear units (such as ramps) in both networks. Our goal here is to show
that the VC dimension of the hierarchical network is usually much lower than
the VC dimension of the “equivalent” shallow one. A sketch of the argument is
as follows.

11



Proof sketch Consider again a function of d variables with the compositional

structure of a binary tree. As before, I = log, d and the number v of the nodes
(that is /) is v = d — 1. In the example in the figure d =8, =3, v ="7.

Let us now denote with B the unit ball in R%. We consider a specific case
that applies to our case of piecewise linear splines approximation (the nonlinear-
ity used — see h below —is in C'!). In particular we assume that f is defined on B¢
and belongs to the Sobolev space WL (B) with || f]|1,00 = mazo<k<1||D*f|],, <
1. This implies that || f|]1,2 < 1. Under these assumptions, ridge approximants
of the form

Zhi(<wi,x>), (10)

with h;(2) = ¢i|z — b4, are dense in Lo, (B™).

We want to estimate the number r needed to guarantee a maximum er-
ror F in approximating f(xy,--- ,x4) with the shallow network represented by
Equation 10. Note that the shallow network contains r operations, r parameter
vectors w® € R?, and r offset parameters b;

We use Theorem 6.2 in [6]. We consider the upper bound of the approxi-
mation error € obtained by ridge functions of the form >;_; h;({w?,x)). The

1

upper bound provides a minimum required number rgpqi0w as € < Cr;,fa’l;ow

where C' is independent of f and r.

Let us now consider the deep (binary tree) network. Our assumptions above
guarantee that || D! f||, < 1. Thus there is “good propagation” of the error in
the compositional representation of f in terms of the i functions. In particular,
the total Lo error of the deep network with a binary tree structure can be
estimated (because in our case E? = pOF (D, f)*(Az)?) as (d — 1)%E/\, where
Ep is the error of each of the A modules, the total number of which is d — 1.

Let us set 75 the number of units within each /. Then using again Theorem

6.2 in [6] for each A module, one obtains Ep < C’(r/\)f1 and thus Egeep <
C(d - 1)%(7‘/\)_1 . Set Tshailow at a value sufficient to attain no more than

<C(d—1)3(rp)"". The

1
the same error of the deep network yielding Crg,; .
equation finally yields

(rp)*
(d—1)F

In the special case of d = 2 the shallow and the deep network achieve the
same error. Otherwise the shallow network requires an number of units which
increases exponentially with d if the number of units in each A module in the
depp network is larger than v/d — 1. Notice that the number of units in each A
in the deep network has to increase with d (e.g. with the depth of the network,
since d = 2') in order to maintain the same overall error.

The previous lemma provides bounds on the VC-dimension of deep and
shallow networks. A A unit in the binary tree has a bound of order O(12),

(11)

TShallow =
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whereas the bound for a /\ unit in the shallow network is O((d + 2)?).

Theorem 5. Consider a function f on B¢ belonging to the Sobolev space
WL (BY) with || f||1,00 = mazo<k<1||D*fl|, < 1. Suppose that

e the function f has a binary tree compositional structure in terms of lower
dimensional functions h(x1,x2) and

e o deep network with the same binary tree architecture has a sufficient
number rp of terms in each of its d — 1 /\ nodes to approzimate f within
€.

Then

1. a shallow network with at least the same approzimation power meeds at

d—1
r .
least Tshaliow > % UNILSs.

(d=1)"2
2. a bound on the VC-dimension of the binary classifier induced by the deep
network is O((d — 1)27"5\12), whereas the VC-dimension of the shallow

2(d—1)

network is O((d + 2)2#).

Setting rp ~ Kd shows that the VC-dimension of the shallow network increases
exponentially (as ~ d?K??) with the dimension d whereas the VC-dimension of
the deep network increases only polynomially (as ~ d*K?).

In a sense hierarchical deep networks can avoid the curse of dimensionality for
compositional functions with respect to shallow networks because each module in
the hierarchy has bounded dimensionality, which is equal to 2 in the binary tree
case. As we mention elsewhere the VC-dimension is further strongly reduced
by invariances of the network such as translation invariance (corresponding to
weight sharing).

Remarks

e The result above provides the following explanation of the observed con-
vergence of deep networks (when they converge) with simultaneous de-
crease of the training and the test error. The reason is that the network
architecture matches almost exactly the target function (error is close to
zero) and it can be learned from data because of the relatively small sample
complexity.

e Notice that the assumption ||f||1,00 < 1 may be guaranteed by normaliza-

tion operations or bounds on the weights of a deep network.

e The proposition above can be extended to any d-dimensional function
flxy, - xq) in W(B?) satisfying [|f|[m, < 1. The proposition was

proved for binary trees using linear splines but it is valid more in general.

13



e As mentioned in [5], combining Theorems 11.13 and 14.1 from [12], it is
known that for a class of networks such as those we are learning, the fat-
shattering dimension is upper-bounded by the VC dimension of a slightly
larger class of networks, which have an additional real input and an addi-
tional output node computing a linear threshold function in R%. Such a
class of networks has a similar VC dimension to our original class, hence
we can effectively bound the fat-shattering dimension as well.

5.3 Why vision requires compositional functions?

We saw that, though both deep hierarchies and shallow hierarchies are universal,
deep hierarchies are approximated inefficiently by shallow ones. The final step
in the argument is to show that deep hierarchical functions represent critical
computations for vision.

The general point is that hierarchies — and weight sharing — reflect symme-
tries in the physical world that manifest themselves through the image statistics.
Assume for instance that a computational hierarchy such as

hi(- - - hg(ho1(hi1 (21, 22), hi2(23, 24)), hoo(h1s(s, 26), hia(zr, 28)) -+ ))) (12)

is given. Then shift invariance of the image statistics could be reflected in the
following property: the local node “processors” should satisfy ha; = hso and
hi1 = hi2 = hi3 = hq4 since there is no reason for them to be different across
images. In a similar way hs and hs; should be “scaled” versions of each other
because of scale invariance. Similar invariances of image statistics — for instance
to rotation — can be similarly use to constrain the local processes h.

It is natural to ask whether the hierarchy itself — for simplicity the idealized
binary tree of the Figure 5— follows from a specific symmetry in the world and
which one. We suggest that the answer to this question follows from the fact
that in natural images the target object is usually among several other objects at
a range od scales and position, that is the target object is embedded in clutter.
From the physical point of view, this is equivalent to the observation that there
are several localized clusters of surfaces with similar properties (objects)?

This basic aspects of the physical world are reflected in properties of the
statistics of images: locality, shift invariance and scale invariance. In partic-
ular, locality reflects clustering of similar surfaces in the world — the closer to
each other pixels are in the image, the more likely they are to be correlated.
Thus nearby patches are likely to be correlated (because of locality), and so
are neighboring (because of shift invariance) image regions of increasing size
(because of scale invariance). Ruderman’s pioneering work [13] concludes that

2Usually objects contain smaller clusters of similar surfaces in a selfsimilar fractal way. One
of Mandelbrot examples described the coast of Britain as consisting of large features each one
containing smaller similar features and so on. As a reminder, a self-similar object is similar
to a part of itself (i.e. the whole is similar to one or more of the parts). Many objects in the
real world, are statistically self-similar: parts of them show the same statistical properties at
many scales.
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this set of properties is equivalent to the statement that natural images con-
sist of many object patches that may partly occlude each other (object patches
are image patches which have similar properties because they are induced by
local groups of surfaces with similar properties). We argue that Ruderman’s
conclusion implies

e the property of selfsimilarity of image statistics, which in part reflects the
compositionality of objects and parts: parts are themselves objects, that
is selfsimilar clusters of similar surfaces in the physical world.

e the pervasive presence of clutter: in an image target objects are typically
embedded among many objects at different scales and positions.

The first property compositionality, was a main motivation for hierarchical
architectures such as HMAX which can be seen to be similar to a pyramid of
AND and OR layers [14], that is a sequence of conjunctions and disjunctions.
As we will see in the next section the presence of clutter together with the
need of position and scale invariance implies that many visual computations,
that is functions evaluated on images, should have a compositional structure.
Multilayer networks such as the binary tree of Figure 1 are the representations of
compositional functions which lead to the lowest sample complexity. According
to these intuitions, deep hierarchical networks should be important for vision
tasks.

Remarks

e There is a subtle but important distinction between a) translation and
scale invariance in object recognition and b) shift-invariance and scale
invariance of the statistics of natural images. The point is that one can
have sets of patterns which do not have the statistics of natural images and
process them in a scale and shift-invariant way. Of course, the reason one
wants shift and scale invariance in object recognition is because objects
can appear at any position and scale in images, which is exactly why
the statistics of images is position and scale invariant. In a related vein,
using i-theory it is possible to learn invariances , such as shift and scale
invariance, from visual experience because they are reflected in image
statistics.

5.3.1 Formal sanity check: recognition in clutter

The arguments of the previous section are suggestive but unfortunately there
is no fully equivalent formal result (as yet). Here I provide a formal argument,
somewhat in the spirit of the recognition-in-context theorems of the Perceptron
book. While they are still far from a full formalization of the previous sections,
they shows a significant advantage of hierarchical architecture relative to shallow
ones. The advantage derives from the locality property of objects and concerns
an important computation: recognition in clutter. Figure 6 summarizes the
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skeleton of the argument: the recognition of object A suffers from interference
from clutter (B) in the case of a shallow network. The proof is quite simple but
we need to recall the definitions in [1].

Let Z = R% and P(Z) the space of probability measures on Z. In the
following we assume G to be Abelian and compact and the corresponding Haar
measure to be normalized. Note that, a group defines a natural equivalence
relation I ~ I’, corresponding to point lying on the same orbit. The first step
in our reasoning is the following definition.

Definition 1. For all I € Z, define the random variable
Zr:(G.dg) = I, Zi(g9)=gl, Vgeg,

with law

pr(A) = / dg,
Z;7H(A)

for all measurable sets A C . Let
P:T—PI), PU)=p;, VIeT

The map P associates to each point a corresponding probability distribution.
Then, we have the following result.

Theorem 6. P(I) # P(I') unless I ~ I'.

The above result is a restatement of a result in [1]. The point is that,
since having clutter in I’ implies that I ~ I’ does not hold, then the theorem
says that the distribution cannot be the same: therefore no invariance and no
uniqueness. In other words, the proof of uniqueness and invariance of pooling
(see [1]) does not hold when clutter — defined as image patches that may change
from one presentation of the object to the next presentation — is present within
the pooling region.

As shown in Figure 6, in the case of the deep network each of the two objects
can be recognized in the lower layers without interference from the other object.
Thus we have

Proposition 1. Hierarchies allows for visual computations in the lower layers
that are more robust to clutter than shallow architectures.

5.3.2 Another sanity check: representing objects and parts

In addition to the issues of sample complexity and connectivity, compositional
functions capture the hierarchical organization of the visual world where scenes
are composed of objects which are themselves composed of parts. Objects can
move in a scene relative to each other without changing their identity and often
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Figure 6: Two objects (A and B) are shown to a shallow (a) and a deep (b)
network. In the case of the deep network each of the two objects can be recognized
in the lower layers without interference by the other object. This is not possible
for the shallow network. There is a key prediction here for the architecture of
the ventral stream: there should be bypass connections — direct or indirect — from
lower layers to the output layer.

changing the scene only in a minor way; the same is often true for parts within
an object. In a hierarchical network global and local signatures from all lev-
els of the hierarchy provide access memory and enable the categorization and
identification of patches of the image corresponding to objects and their parts.

Each /A module provides uniqueness and invariance to affine transformations
within its pooling range. A deep network also provides invariance over affine
transformations but in addition it is capable of providing invariance over non-
global deformations. Consider for instance the two face drawings of Figure 7.
The following holds:

Property There exist local image deformations such as in Figure 7 to which a
two layer hierarchical network can be invariant.

Thus, in addition to the desired properties of invariance and selectivity, these
architectures match the hierarchical structure of the visual world and the need
to retrieve items from memory at various levels of size and complexity. The
property of compositionality is related to the efficacy of hierarchical architec-
tures vs. one layer architectures in dealing with the problem of partial occlusion
and the more difficult problem of clutter in object recognition.
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Figure 7: Two line drawings of a face. The drawing on the Tight is a non affine
transformation of the face on the left. A hierarchical network in which separate
/\ modules “see” the two eyes may be invariant to the non-affine transformation.

6 A general theoretical framework: depth vs
width

A very recent paper indirectly suggests that our explanation of the role of depth,
though correct, may not represent the full story for current DCNNs. In [15] an
extremely deep architecture is improved, in terms of training and testing error,
by adding layers which are not compositional and do not reduce dimensionality.
In this network with bypass, identity connections, each layer attempts to fit the
error between the output of the previous layers and the target. The elegant
residual design is not important for the argument below; what is important is
that provides stability to training of very deep architectures.

In any case, let us consider the residual network for concreteness. We draw
an analogy with the quadratic networks of Figure 4 — which add layers that
increase the degree of the polynomial represented by the network. Training
on the residuals, as [15] do, would be equivalent to set the new higher degree
polynomials to fit the residual of the set of previous layers. In the case of
quadratic networks it is clear that additional layers increase the approximation
power of the network by synthesizing higher degree polynomials. This cannot
be achieved at all by increasing the number of units in the previous layer (it
could be achieved by adding a polynomial of appropriate degree computed ez
novo on the input = at a high cost in terms of units). Consider, on the other
hand, ridge functions built on the absolute value nonlinearity (or the ramp):
the approximating space of one layer can be expanded simply by adding units
(see Proposition below). However, this may not be as effective as composing
with an additional layer (e.g. as in [15] ). The key observation is the following.
Consider the approximation of a one-dimensional function by a network. The
remark below about N, says that N,.1 contains 7, the linear space of univari-
ate algebraic polynomials of degree at most r. The following statement (that
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we will prove in a paper in preparation) follows:

Theorem 7 (Depth-width Theorem). Consider adding depth to K versus adding
width: H o K has degree MK if H has degree M and K has degree N, instead
of M + K.

Of course a generic polynomial of degree N will require a similar order of mag-
nitude in number of units for both shallow and deep implementations. If the
function however is p-sparse in the sense of being well approximated by a sparse
polynomial of high degree, then the deep implementation will use fewer units
and have a lower VC-dimension bound.
A similar reasoning applies to functions of d variables. We recall that the
number of monomials in a polynomial in d variables with total degree < N is
N ) and can be written as a linear combination of the same number of terms
of the form ((w, z) + b)". Mhaskar ([16], see also [6]) proves that the space

T
M, (6) = { S co((w',a) - b»}, (13)

i=1
with 7 = N? contains Py the linear space of d-variate algebraic polynomials of
degree at most N.

Similar results hold for spline approximation where a lemma of critical im-
portance is Lemma 3.6 [17] which is trivially satisfied by ¢(z) = (Jz|+)™: the
activation function now commonly used is the basis for B-splines of order m. In
practice this means that a tensor product B-spline can be implemented using a
neural network with units arranged in multiple layers.

An examination of the proofs leads to the following conjecture (see forth-
coming paper), stated here informally. Let us first give a definition: a function
of d variables is p.-sparse if it can be approximated within € by a polynomial of
degree N which is not generic.

Conjecture 2. We conjecture that functions that can be well approximated by
a deep network with lower VC-dimension than by a shallow network must be
De-Sparse .

A simple case of the above property consists of polynomials corresponding
to a tree where each of the ) nodes represents products and powers of terms
of the form ((w,z) + b) with Q < (dJ;N ). A similar more extreme case are
polynomials that are sparse in the number of monomials. Still another case is
the function composition case studied in most of this paper.

Remarks

e The elegant approach of [15] is an interesting twist on the how to train
a deep architecture. Usually the learning process optimizes the operators
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K; in

fx)=K,o0---0Ky0 Ky (14)

which we write in a formal short-hand notation as (the various K are
intended to be of the same type but with different parameters) as f(x) =
K™zx.

An alternative is to learn the H; in the equivalent network proposed by
[15] where K = (I + H)

Fl@)= +H)"w=(I+Hy)o--o(I+H)r. (15)

In this network it is clear that layer H, is an additive correction to the
operator approximated by the previous n—1 layers; learning it corresponds
to minimizing the residual f(x) — K™ '

As described in section 4 node j in a network may compute

K

Fi(x) = ciul (@ t5) + binlt. (16)

k=1

whereas a standard neuron in DCNNs computes the above with K = 1
that is

fi(@) = cj| (e, t5) + byl 4. (17)

As we mentioned, it is illuminating to consider the two cases when the
nonlinearity is square. The two situations are: the polynomzial case

F() = {ti, )%, (18)
and the spline case
K
Fi@) =" il (b)) + bjul? (19)
k=1

Typically splines have better numerical properties than polynomials, but
they both have the same rate of approximation.

Properties of the iteration scheme of [15] may be characterized following
the arguments of Theorem 4.5 in [18]. Similar properties are likely to hold.
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e Notice that the set of shifted and dilated ridge functions has the following
property. Consider for ¢;, b;, A; € R the space of univariate functions

Ni(¢) = { chzd)()\iﬂ? - bv)} . (20)

i=1
The following (Proposition 3.6 in [6]) holds

Proposition 2. If ¢ is not a polynomial, the closure of N contains the
linear space of algebraic polynomial of degree at most r — 1.

Notice that N, + Ny = N, ys.

e Interesting properties, that we will discuss in a sequel to this paper, include
the following ones:

— Mhaskar’s “local approximation” in deep vs shallow networks;

— Mhaskar’s suggestion that neural networks may combine advantages
of spline and polynomial approximation;

— the “supervised PCA” stage between layers is similar to the (unsu-
pervised) PCA step performed within the HT tensor decomposition
and is similar to a suggestion by Shalev-Schwartz for his quadratic
networks;

— the network may not mimic the exact hierarchy or sparsity of the
input-output mapping as long as its architecture allows the learning
process to converge to it by finding appropriate weights;

— p-sparsity may be generic but it is not clear under which assumptions.

Remarks on computational symmetries, im-
age statistics, physics, hierarchies

e Networks that with architecture matching the compositional structure of
a specific computation, are optimal ( “the power is the hierarchy.”). There-
fore one expects that somewhat different types of trees may be required
for different tasks.

e [t is the combination of localization, scale invariance and shift invariance
—rather than any one of the three symmetries — which is key in implying
convolutional-type hierarchies

e In the Perceptron book many interesting visual computations have low
order (e.g. recognition of isolated figures). The message is that they can
be implemented in a single layer by units that have a small number of
inputs. More complex visual computations require inputs from the full
visual field. A hierarchical network can achieve effective high order at the
top using units with low order.
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The network architecture of Figure 5 b) has low order: each node in the
intermediate layers is connected to just 2 other nodes, rather than (say)
all nodes in the previous layer (notice that the connections in the trees of
the figures may reflect linear combinations of the input units).

Low order may be a key constraint for cortex. If it captures what is
possible in terms of connectivity between neurons, it may determine by
itself the hierarchical architecture of the ventral stream.

On the other hand, a low-order hierarchy may be the computational con-
sequence of the compositionality of the visual world and the related ef-
fectiveness of learning first common parts or features and more complex
objects later in the hierarchy. This is particulary important when a deep
network is trained on a large multiclass problem: since simple parts are
likely to be common across many different classes the first layers of the
network can leverage a large set of examples independently of the label.

What is the relation of the arguments in this note with i-theory? This
note provide a logic and formal results to explain why hierarchical net-
works are better than shallow ones for visual computations. The original
core of i-theory describes how pooling can provide either shallow or deep
networks with invariance and selectivity properties. Such properties are
embedded in the A modules of the theory (which usually have many in-
puts). Older i-theory papers discuss the question of why hierarchies along
lines qualitatively similar to this paper. Our results here, shown for the
case of A with two inputs, are equally valid for the usual case of A with
many inputs and invariance arising from pooling.

Theorem 4 is closely related to the compression argument of [7], see Ap-
pendices.

There is a distinction in learning templates and their transformations on
one hand and on the other hand learning the other parameters. The issue
is that the weight vectors w; = g;t and w; = g;t, corresponding to two
transformations of the same template within the same A, can be updated
but only under the constraint w; = gpw; (for some h). This is what
“weight sharing” in DLNs means (when ¢ is an element of the translation
group). It seems difficult to extend the “weight sharing” idea to situa-
tions in which the group is not the translation group or, even worse, is
not known. In particular, as discussed in [7], a biological learning rule
that enforces weight-sharing across the visual field seems implausible. In
addition to the two possibilities we listed there we want to suggest a third
more attractive conjecture: images that change continuously drive unsu-
pervised learning of the simple cells receptive fields; all other parameters
are learned only in a supervised way, for instance by SGD. In this way, the
simple cells weights would be automatically shared; they would however
be independent of supervision in learning.
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o A model of universal neural network computation. In the traditional “dig-
ital” model of computation, universality means the capability of running
any program that is computable by a Turing machine. Concepts such as
polynomial vs non-polynomial complexity emerge from this point of view.
For neural networks the model of computations that seems to take form
now is closely related to function approximation. Here universality may
be defined in terms of universal approximation of a function of d variables
(the inputs). The appropriate definitions of complexity are the classical
ones for Machine Learning (VC dimension and related quantities). An
analysis of the complexity of the specific class of hierarchical functions of
d variables suggests that order and depth of its tree representation play a
key role in determining its VC dimension. Notice in particular that the
VC dimension of a network corresponding to a binary tree is small and
becomes very small under the conditions of shift-invariance and scaling
properties of the h functions corresponding to the nodes (there is effec-
tively only one h with its small number of parameters because of the low
dimensionality (2) plus scaling parameters which should be in the order
of the number of layers).
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1 Appendices

1.1 Compression via depth

An argument that should be equivalent or closely related to our theorem 4
shows that hierarchies can achieve higher compression in terms of bits tuned by
learning than shallow architectures. The key condition for compression to be
possible is that the inputs allow for reusable “code vectors”. The argument was
developed for HBF networks in [7]. It applies to the hierarchical linear splines
networks discussed in this paper because of the universality of the underlying
motifs. We reproduce the section of [7] below.

We consider a HBF module with Gaussian-like radial kernel and “movable”
centers (we assume standard Euclidean distance, see Poggio, Girosi,[19]; Jones,
Girosi and Poggio,[20]). The presence of pooling does not change the result.

First, notice that one-hidden-layer HBF can be much more efficient in stor-
age (e.g. bits used for all the centers) than classical RBF because of the smaller
number of centers (HBFs are similar to a multidimensional free-knots spline
whereas RBFs correspond to classical spline). The next step in the argument
is the observation that a network of radial Gaussian-like units become in the
limit of ¢ — 0 a look-up table with entries corresponding to the centers. The
network can be described in terms of soft Vector Quantization (VQ) (see sec-
tion 6.3 in Poggio and Girosi, [21]). Notice that hierarchical VQ (dubbed HVQ)
can be even more efficient than VQ in terms of storage requirements (see e.g.
[22]). This suggests that a hierarchy of HBF layers may be similar (depending
on which weights are determined by learning) to HVQ. Note that compression
is achieved when parts can be reused in higher level layers, as shown in the fol-
lowing example.

Example Consider the case of kernels that are in the limit delta-like functions
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(such as Gaussian with very small variance). Suppose that there are four possi-
ble quantizations of the input z: x1, x3, 3, z4. One hidden layer would consist
of four units §(z — x;),i = 1,--- ,4. But suppose that the vectors x1,xs, x3, x4
can be decomposed in terms of two smaller parts or features z’ and z”, e.g.
T =2 @2, o =2 P2, r3=2"®z" and v4 = 2" & z’. Then a two layer
network could have two types of units in the first layer §(x —2') and §(z—2"); in
the second layer four units will detect the conjunctions of 2’ and z” correspond-
ing to x1,xe,x3, 4. The memory requirements will go from 4N to 2N/2 4+ 8
where N is the length of the quantized vectors; the latter is much smaller for
large N. Memory compression for HVQ vs VQ — that is for multilayer networks
vs one-layer networks — increases with the number of (reusable) parts. Thus for
problems that are compositional, such as text and probably images, hierarchi-
cal architectures of HBF modules minimize memory requirements (but do not
increase representational power).

In summary, classical theorems (see references in [23, 24] show that one
hidden layer networks can approximate arbitrarily well rather general classes
of functions. A possible advantage of multilayer vs one-layer networks that
emerges from the above analysis is memory efficiency which can be critical for
large data sets and is related to generalization rates.

1.2 Scale invariance and self-similarity

Consider a multiresolution representation of an image such as in Figure 8. Sup-
pose that a non-fractal object — such as a square — activates the bottom two
layers. If the object is moved further away the activation will translate to higher
layers but remain the same. Suppose to repeat the test with a fractal object —
such as a Koch curve. In this case the activation of all layers will be the same
and it will not change if the curve is moved further or closer. Self-similarity is
rare but statistical self-similarity is everywhere.

2 Convergence of an iterative learning algorithm

Theorem 4.2 in [18] may be adapted to prove convergence of an iteration method
that optimizes the best correction at layer m until the last layer and then iter-
ates.

The steps are: I) The optimum approximation of zero degree and the se-
quences of optimal corrections up to the layer n are calculated. II) The op-
timum corrections to the result of step are computed for all degrees, starting
again from the zero order degree. III)

The iteration results in a series of layers (i = 1,2,--- ,n) and in the associ-
ated mean square errors. The iteration algorithm outlined here (adapted from
Katzenelson et al., 1964) gives at each step a meaningful result. Convergence
of the iteration algorithm, as well as the uniqueness of the optimum estimator
up to an estimator which does not affect the mean square error, are proved in
the next theorem.
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Theorem 4.2 The iterative algorithm a) has a limit n-th order estimator;
b) the limit estimator is the optimal n-th order estimator in the least square
sense; ¢) the limit estimator is unique up to an estimator of the same degree
which does not affect the mean square error.

2.1 Pooling over scale and position layerwise

The argument relating hierarchies and compositionality of objects and parts is
about today’s deep convolutional networks. In this case the inputs are at a single
scale in different positions. The primate visual system presents a somewhat
different input organization.

According to the arguments of [25] the templates in the first stage of the ven-
tral stream are Gabor-like functions with a multiresolution structure (in z,y, s),
see Figure 8. In a shallow network pooling over that set of transformed tem-
plates would give uniform invariance to all scale transformations of a pattern
over the range (Sg, Smaz); invariance to shifts will be at least within (—xg, xo),
depending on scale. Note that under scale and translation a single Gabor tem-
plate originates a set of Gabor wavelets (a tight frame).

An image may activate all or part of the Gabor filters within the inverted
truncated pyramid. We assume that the Gabor filter and its transforms under
translation and scaling are roughly bandpass and the sampling interval at one
scale over z is s, implying half overlap of the filters in x.

For the scale axis a possible sampling pattern follows the estimate of Marr
et al.[26] with 5 “frequency channels” having diameter 2s = 1'20”, 3.1, 6.2,
11.7°, 21’. Filter channels as described above are supported by sampling by
photoreceptors that starts in the center of the fovea at the Shannon rate with
an exagonal lattice with a separation of 30” which increases with increasing
eccentricity.

In this “truncated pyramid” model, the Gabor templates correspond to sim-
ple cells. Templates across scales may all be in V1 as assumed more or less
explicitly by [25]. Here we propose that it may be possible they are distributed
between V1, V2 and possibly V4, with small scales in V1 and larger in V2 and
V4. We also assume that the pooling is local in z,y, s, possibly in a 2 by 2 by
2 cube.

Because this input architecture is eccentricity dependent and because of the
estimates of its dimensions, there is limited shift invariance in the ventral stream
while scale invariance is significant. This would imply that in this architecture,
differently from the current deep learning networks, the representation of objects
by parts will mostly unfold across units at different scales and positions rather
than only at different positions as in the case of DLNs.

Remarks

e The inverse pyramid model with parameters inferred from data implies
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Figure 8: Figure A shows a foveola of = 26’ and a total of ~ 40 units (20 on
each side of the center of the fovea). It also shows sampling intervals at the
coarsest scale in the fovea (assumed to be around 2s = 21’ which would span
~ £6°. Note that the size of a letter on the ophthalmologist’s screen for 20/20
vision is around 5. Since the inverted truncated pyramid (A) has the same
number of sample points at every scale, it maps onto a square array (B).
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that processing happens on multiple “small” images at different resolu-
tions: these are suggestive of Ullman’s MIRCs. Notice that performing
recognition on fragments provides, among several other properties, robust-
ness to clutter.

It is important to assume that information at the (complex cells) nodes of
each layer is available to the output. Our argument about clutter in the
main text relies on this.
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