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Abstract. Recognizing the pose of hands matters most when hands are
interacting with other objects. To understand how well both machines and
humans perform on single-image 2D hand-pose reconstruction from RGB
images, we collected a challenging dataset of hands interacting with 148
objects. We used a novel methodology that provides the same hand in the
same pose both with the object being present and occluding the hand and
without the object occluding the hand. Additionally, we collected a wide
range of grasps for each object designing the data collection methodology
to ensure this diversity. Using this dataset we measured the performance
of two state-of-the-art hand-pose recognition methods showing that both
are extremely brittle when faced with even light occlusion from an object.
This is not evident in previous datasets because they often avoid hand-
object occlusions and because they are collected from videos where hands
are often between objects and mostly unoccluded. We annotated a subset
of the dataset and used that to show that humans are robust with respect
to occlusion, and also to characterize human hand perception, the space
of grasps that seem to be considered, and the accuracy of reconstructing
occluded portions of hands. We expect that such data will be of interest
to both the vision community for developing more robust hand-pose
algorithms and to the robotic grasp planning community for learning
such grasps. The dataset is available at occludedhands.com
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1 Introduction

Understanding what humans are doing nearly always requires reconstructing the
poses of their bodies and in particular their hands. While body pose recognition
from single RGB images has advanced significantly [1-5], hand-pose recogni-
tion from this type of data has received far less attention. Despite this, recent
publications have shown results that reconstruct hand models to within a few
pixels of human annotations [6,7]. Here we investigate the performance of such
models, introducing a challenging new dataset consisting of common grasps of
common objects where those grasps are shown both with the objects occluding
the hand and without the object present. We also provide the first measurements
of human hand-pose reconstruction accuracy as a function of the proportion of
the hand that is occluded against ground-truth annotations. In brief, we discover
that existing machine vision systems are brittle with respect to occlusion while
humans are robust and vastly outperform machines; we also introduce a new
benchmark and target for hand-pose estimation algorithms.

Our dataset is large, consisting of 11,840 images of grasps of 148 object
instances. Unlike in most other prior datasets, here each image is collected
individually and not from a longer video. We eschew shooting videos and collecting
frames from them despite the convenience of doing so because the resulting frames
are highly correlated and, due to the mechanical constraints of humans the images,
tend to display unoccluded hands moving from place to place. The correlation
between the grasps and object types was minimized by asking subjects to perform
multiple grasps with the same object. We annotated 400 images with 21 keypoints
4 times over in order to compute human inter-coder agreement. The dataset
contains images of hands grasping objects followed by that same grasp but without
the presence of the object. This allows us to compute the accuracy of human
perception for partially occluded hands against the ground truth hand poses. We
then provide a human benchmark on this dataset, finding that humans have 5.31
pixel agreement, which allows us to quantify the state of the art in hand-pose
construction and the difference between human and machine perception. While on
most other datasets hand-pose reconstruction works well, e.g., average Fuclidean
distance of 4 to 5 pixels on the Dexter datasets [8-10], the dataset we provide
has an average error of 20 pixels making it far more challenging.

The contributions of this work are:

1. a new hand-pose dataset that focuses on recovering hand pose when it matters
most: during hand-object interactions,

2. demonstrating that current hand-pose recognizers are brittle and fail when
faced with occlusion despite scoring extremely well on previous datasets,

3. a novel methodology for gathering hand-pose datasets that allows us to
produce, for the first time, a large set of pairs of hand grasps both with the
object present and without the object occluding the hand,

4. an approach to gather many varied stable grasps per object,

5. the first baseline for human hand pose recognition accuracy showing that
existing approaches vastly underperform humans.
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2 Related work

Several hand-pose datasets already exist. Historically, most have focused on depth
images rather than RGB images and few have had any hand-object interactions.
Notably, the NYU Hand Pose Dataset [11] contains several long video sequences
but is only geared toward use as a depth dataset as the RGB images are rectified
rendering them unusuable for single-image hand-pose reconstruction. We do not
discuss depth-only datasets further and point the reader to a recent survey of
such [12]. The MPII Human Pose dataset [13] contains 11,701 test RGB images
of humans engaging in common actions. While these are natural videos from
YouTube and the frames are selected to be fairly far apart (at least five seconds, to
ensure that they are decorrelated), in most frames hands do not grasp any object.
We focus in particular on grasps because they naturally result in high occlusion
and because they are so critical to understanding how others are manipulating
objects. Few images in the MPII Human Pose dataset are annotated with hand
poses. The Yale Human hand grasping dataset [14], while very large at 27.7 hours
of video, contains 9100 RGB images of hands grasping 11 object classes shot
from an egocentric point of view. As these are derived from a small number of
video sequences where subjects performed repetitive tasks with a small number
of objects, the same grasps reoccur many times.

Dexter+Object EgoDexter Ours

Fig. 1. A comparison of grasps from Dexter+Object, EgoDexter, and our dataset. Note
that previous datasets are designed to remove occlusions and have subjects engage in
careful grasps to do so. In our dataset, most subjects were naive having no background
in computer vision and only a generic knowledge of how the dataset would be used.
This leads to much more natural grasps that significantly occlude the hands.

The closest datasets to the one presented here are Dexter [8], Ego-Dexter [9],
and Dexter+Object [10]. They are all collected using the same general procedures.
Video sequences are shot of humans changing their hand pose, in the latter two
cases while interacting with objects. Since these datasets are collected by shooting
videos rather than images, both the grasps in adjacent frames and the pixel
values of the frames themselves are highly correlated. This effectively reduces
their dataset size significantly. More fundamentally, even though they contain
hand-object interactions, hands must travel to arrive at objects and manipulate
them. This means that many of the frames do not actually contain hand-object
interactions. The three Dexter datasets were collected by subjects who were
motivated to make their grasps and interactions as plain, simple, and obvious as
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possible. See fig. 1 for an example of what we mean here; the grasps in Dexter
avoid hand occlusion and are designed to be easy. Most of our subjects were naive,
they were paid for their data collection services, essentially all of the data was
collected by subjects not connected to this publication, and they were generally
only vaguely aware of the purpose of the dataset. This resulted in grasps that
are far more natural and, when combined with our methodology to increase the
variety of grasps, resulted in a much larger range of hand poses. It is simply a
consequence of natural human object grasps that they result in images where
the hands are highly occluded. The biases of subjects and those inherent in
data collection protocols have been shown to lead to a significant overstating of
machine accuracy in other domains such as natural language processing [15].

Table 1. A comparison of statistics of RGB hand-pose datasets. Within a sequence,
poses are highly correlated meaning that the datasets are effectively far smaller than
it may first appear. This is in part because most previous datasets are collections of
video snippets. In our case, dataset size is effectively reduced by a factor of two because
the dataset contains the same hand pose both occluded and unoccluded by an object.
The dataset presented here is much larger than previous datasets, with many more
decorrelated hand poses and with more controls to provide a variety of hand poses

Dataset # of sequences # of frames # of objects
Dexter 7 videos 1,750 N/A
Dexter+Object 6 videos 3,151 1
Ego-Dexter 4 videos 3,194 17
Ours 5,920 11,840 148

Previous investigations have attempted to characterize human hand perception
although no concrete results exist showing the agreement and accuracy of human
hand-pose recognition. Santello et al. provide a recent overview of the neural
and biological basis for hand control [16]. Existing datasets have at most one
annotation and rarely have any ground truth data. This means measuring the
accuracy of human perception on this task, and, by extension, determining how
far away machine results are from human-level performance, is not possible.

In robotics, grasp planning has been investigated [17]. This has included large
datasets of grasps but they consist generally of images or videos of attempted
robotic grasps [18]. In some cases, such datasets have been synthesized automati-
cally, a potentially useful approach for human hand-pose recognition [19]. The
stability of a grasp is of key importance to robotics and its prediction plays a
role in some datasets [20]. While we do not consider physical stability in this
publication, we do intend to, in the future, investigate if perception is affected
by notions of stability using this data.
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3 A dataset of partially occluded hands

We collected a dataset of 11,840 images of hands holding objects. We chose 148
object instances, initially 150 objects but two were damaged during imaging
thereby changing their appearance and prompting their removal. Human subjects
were asked to hold those objects. Each time a subject held an object, it was then
taken from them while they remained in the same pose and another image was
shot. This provides the same grasp, up to some minor error, both as it would
appear naturally occluded by the object being grasped and unoccluded by the
object. Since many objects have a default use, humans tend to grasp them in a
consistent manner. To avoid this, and to prevent merely learning and evaluating
the default grasp thereby giving the appearance of hand-pose recognition without
there being any, we asked subjects to then hold the object in a different way, as
determined by the subjects. Each trial then consists of a quad of a hand holding
an object in two ways, each both with the object and then without. In what
follows we describe the rationale, methodology, and contents of the dataset.

The 148 object instances, almost all from different object classes, were chosen
to reflect common objects present in homes that might be of interest to both
activity recognition in households and to robot grasping. The chosen objects
were opaque to ensure that they could properly occlude the hand and large
enough to do so; this ruled out some common but far too small objects like most
cutlery. Both deforamble and non-deformable objects were included; with 20 out
of the 148 objects being deformable. An overview of the objects selected is shown
in fig. 2. The dataset is balanced with respect to the object instances with 80
images for each object. The objects have a diverse set of possible grasps since
they serve different purposes; they were chosen to have different topologies, and
have different weights putting constraints on the possible stable grasps.

We designed the data collection procedure to increase the set of grasps that
were employed by the subjects. First, an image was collected of a subject grasping
an object. Next, that object was removed from the grasp of the subject and
another image was collected. In this second image the grasp is evident as it is no
longer occluded by the object. It proved to be critical that another individual
remove the object from the grasp of the subject so that they could maintain
their hand in the same pose. Then the subject was asked to grasp that same
object but in a different manner. We did not control for this but subjects were
given several instructions to help them identify other reasonable grasps such as
imagining the object being much heavier, imagining that part of the object is
hot, or that it is being given to someone else at some distance and orientation
from the subject. Two more images were collected just as in the initial conditions
with the subjects holding the object and then having the same grasp but without
the object. This produces a quad where the first pair of the quad is likely a more
intuitive grasp while the second is likely a more special-purpose grasp.

The dataset consists of 10 quads for each object collected in 10 different
locations by approximately two dozen subjects, although the dataset is not
balanced with respect to the identity of the subject. However, it is balanced with
respect to the locations, an equal number of images having been shot in each.
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Fig. 2. The 148 objects imaged as part of this dataset. These are common objects
found in households and offices with a wide range of purposes.
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Within a location, we intentionally did not specify a position or viewpoint for the
camera leading to more varied backgrounds but multiple images were shot from
the same viewpoint in a location. Locations are areas such as hallways, rooms,
or outdoor patios. Examples from the dataset are shown in fig. 3.

Images were collected using portable tripods and subjects’ cellphone cameras.
Subjects were allowed to use both hands when grasping and were not instructed
about the space of allowable grasps. Our intention is to collect images of as a
varied set of grasps as possible. Additionally, subjects were chosen such that a
variety of skin tones is represented, although we did not balance with respect
to skin tone. Most existing hand datasets feature almost exclusively light skin
tones which both biases learning and the evaluation of hand pose recognizers.
We de-identified subjects by using a face detector and coarsely pixelating their
faces. Faces almost never overlapped with grasps.

Since our dataset features the hand poses unobstructed by the object and
due to the fairly good performance of existing hand-pose recognizers in such
favorable conditions, approximate ground truth exists for every image; we merely
copy over the annotation from the unoccluded hand to the occluded hand. This
allows us to validate the accuracy of the hand-pose recognizers on all images in
the dataset even without any human annotation. Yet this would not allow us to
understand how well humans perform on this task of reconstructing interacting
and partially-occluded hands. To do so subjects annotated 400 images, 200 pairs
of unoccluded and occluded images, with anatomical 21-keypoints — 4 for each
finger and one at the wrist. Multiple annotators provided judgments for each
image, with four annotations per image. We use this to compute human agreement
on partially-occluded hand annotations. With our unique design that results
in pairs of images of the same hand occluded and unoccluded images, we can
test the robustness of human perception of partially-occluded hands. These two
experiments help characterize human performance on hand-pose recognition and
have not been performed before. Finally, we can also use human annotations to
verify the performance of machines where we show that on unoccluded hands,
performance is quite good and then quickly decreases with any occlusion.

The methodology described above results in a novel dataset with both the
occluded and unoccluded hands in the same poses, which is balanced with respect
to the object instances, while encouraging a varied set of grasps.

4 Experiments

After discussing the statistics of the dataset, in section 4.1, we evaluate the
performance of state-of-the-art computer vision systems on our dataset, in sec-
tion 4.2, provide the first account for human hand-pose recognition performance,
in section 4.3, and then compare machines against humans putting the state of
computer vision into context, in section 4.4. Two recently-published single-image
hand-pose recognition systems are evaluated: that of Zimmermann and Brox [6],
which we refer to as ZB, and OpenPose [7]. We extensively surveyed the past
three years of major computer vision conferences and these were the only two
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Fig. 3. Eight examples from the dataset. Each row is a quad, a series of four images
taken in quick succession. In the first two images, the leftmost two, the subject uses
their default grasp of the object. In the next two, the rightmost two, subjects are asked
to choose another unspecified grasp. Each pair of images has one image in which the
hand is holding the object followed by another in which the hand is in the same pose
but without the object.
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such systems with publicly available runnable source code and pretrained models.
Note that we do not fine-tune on this dataset, much as many other systems do
not fine tune on the Dexter datasets, and to discourage fine-tuning on this data
we do not provide a training and test split.

4.1 Dataset statistics

The dataset consists of 11,840 images of the 148 object instances shown in fig. 2
with 80 images per instance half of which are of grasps holding an object and
the other half are of those same grasps without holding the object. The dataset
is balanced with respect to the object identity. Deformable objects account for
15% of the data. Hands were annotated with 21 keypoints over 400 images which
were annotated 4 times over to measure human inter-coder agreement. The
likelihood of any one keypoint being under self-occlusion, i.e., being occluded in
the nominally unoccluded view, is 21.9% and is fairly uniform, shown in fig. 4(a),
as is the likelihood of a keypoint being occluded by the object which is 42.3%,
shown in fig. 4(b). We did not control for the distribution over occlusions per
keypoint, as there is no practical way to do so; we merely report the statistics of
the grasps that humans employ. While high-resolution images will be provided,
on average 4065x 2972, for consistency all numbers reported here use the same
image dimensions as the Dexter datasets [8-10], namely 640x480. Note that both
systems were run at their full native resolution with the full image; we merely
report distances rescaled to this standard resolution. The average area of a hand
in the dataset was approximately 2400 pixels, roughly 48x48, as computed by a
bounding box encompassing the extremities of the hand, while the average size
of an object is approximately 2200 pixels, roughly 47x47, about the same size as
the hand.

4.2 Machine performance

First we evaluate how well machines perform against their own judgments. Given
that we have both an occluded and unoccluded image, we can directly ask,
assuming that the reconstructed pose in the unoccluded images are correct: how
much does occlusion degrade machine performance? We find that occlusion is a
major contributor to poor machine performance, i.e., it changes how machines
interpret hands, leading to a 20 and 75 average pixel Euclidean distance for
OpenPose and ZB respectively. The PCK, the probability that a keypoint is
within a given threshold distance in the occluded image relative to the unoccluded
one, is shown in fig. 5(a).

The overall distribution of distances for each keypoint is shown in fig. 5(b).
Error on visible keypoints is around 15 pixels while many of the occluded keypoints
are never identified, representing the peak at 48 pixels. Since the average hand
is about 48x48 pixels we fix the maximum penalty for not finding a hand to
this dimension — not scoring these would lead to perfect performance while
penalizing them the entire length of the image is arbitrary. It is telling that in
any one image roughly half of the keypoints are occluded. At first it may seem
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Fig. 4. The 21 annotated keypoints. (a) The likelihood that a keypoint is under self-
occlusion by the hand. (b) The likelihood that a keypoint is occluded by an object. The
likelihood that any one keypoint is occluded is fairly uniform regardless of the source of
the occlusion. For any one grasp, 21.9% of the keypoints are occluded by the hand and
42.3% are occluded by the object. Note that the latter usually also includes the points
from the former meaning the two sources of occlusion are not mutually-exclusive.

like ZB has lower error from fig. 5(b), but note that the tail is extremely long. ZB
makes make confident but wrong predictions for hands which are spurious. We
did not cap the maximum error of either OpenPose or ZB, but had we capped
both, ZB would have a mean error closer to 40.

To investigate the source of errors further, in fig. 5(c) we show pixel-wise error
as a function of the occlusion of each keypoint in each image. We restricted the
plot to within 50 pixels of the correct value after which the data is fairly uniform.
Again the line at 48 represents the pixels which could not be detected. There
are far more of these failed detections at higher occlusion levels but the plot
hides this information. OpenPose seems significantly more resilient to occlusion
although the trend where additional occlusion worsens results is clear. Whether a
keypoint was occluded was determined by humans, but otherwise we do not use
any human annotations in this experiment. Overall the robustness of machines
to occlusion is quite poor; we will return to this in section 4.4 when machines
are compared to humans.

4.3 Human performance

We provide the first quantitative measurements of humans on hand-pose recon-
struction. On 400 images, 200 pairs of occluded and unoccluded images, we
collected 4 annotations. One was collected in-house while three were collected
on Mechanical Turk. Overall humans agree strongly with each other having a
mean distance of 5.3 pixels and standard deviation of 1.7. In fig. 6, we show
the inter-annotator agreement by keypoint separating (a) unoccluded form (b)
occluded keypoints. Agreement is far higher on unoccluded keypoints with a
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Fig. 5. Performance for OpenPose, shown in blue, and ZB, shown in red. (a) The
distance between keypoints in the occluded hand and those in the same hand pose
unoccluded by any object. (b) The distribution of the errors by distance for each
keypoint. (c¢) The error as a function of the occlusion of the entire hand up to 50 pixels.

mean error of just 2.7 pixels (variance 1.0) while it is significantly lower on
occluded keypoints with a mean of 7.8 (variance 2.5). Performance depends on
the keypoint in part because some keypoints are more likely to be occluded than
others and in part because some keypoints, particularly the wrist, are less well
defined anatomically. This indicates that humans might be much more robust to
occlusion since they agree with each other, although at the same time all humans
might share the same systematic biases.

6.81 10.23

(b)

Fig. 6. The inter-annotator agreement by hand keypoint showing that some keypoints
have higher agreement than others. Overall agreement is far higher than in the machine
case. (a) shows only the unoccluded keypoints while (b) shows only the occluded key-
points. The color encodes the mean pixel error for that keypoint across four annotators.

To investigate human performance, rather than just agreement, we use the
occluded and unoccluded images of the same hand pose and compare human
performance between the two. In essence this asks: how accurate are humans
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when reconstructing occluded points? In fig. 7(a) we show human PCK and
(b) distance as a function of occlusion. Humans are very accurate, robust to
occlusion, and perform this task well leading to high agreement.

PCK.
Percentage Occlusions

0 10 20 30 40 50 5 10 15 20 25 30
Pixels Pixels

(a) (b)

Fig. 7. The performance of humans when reconstructing partially-occluded hands
showing (a) PCK and the (b) error as a function of occlusion.

4.4 Machine vs. Human performance

Finally, having established how well humans perform at hand-pose recognition,
we compare machines to humans. We take the mean human annotation to be the
gold standard and test OpenPose and ZB against it. In fig. 8(a) we show PCK
and in (b) we show the distribution of distances for each keypoint. We report
these numbers only for the occluded hand in each pair. Average keypoint error
on this dataset is far higher than it is on other datasets, being roughly 20 pixels
while it is on the order of 5 pixels in the Dexter datasets. This performance
difference is further accentuated since our hands are smaller in the field of view,
as can be seen in fig. 1. This high distance and distribution are explained by the
fact that OpenPose fails to identify the occluded hand at all in many images,
leading to a bimodal distribution with a peak near the correct hand and another
extremely high variance component that is essentially uniform. Since occluded
keypoints are likely harder to infer than unoccluded keypoints, in (c¢) we show the
performance as a function of the percentage occlusion of the hand. This confirms
the earlier observation that occlusion is indeed the major contributor to poor
performance.

5 Discussion

We describe a challenging new dataset for single-image hand pose estimation,
made difficult by the fact that the natural grasps that humans use tend to occlude
the hand, and make that data available. On other datasets per-keypoint error is
around 4 to 5 pixels while on this dataset it is roughly 20 pixels with the mean
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Euclidean distance per KP

Fig. 8. Performance of OpenPose, shown in blue, and ZB, shown in red against human
annotations. (a) PCK for the partially-occluded hands. (b) The distribution of the
errors by distance. (¢) The pixel error plotted against the percentage occlusion of the
hand.

hand dimensions being 48x48 pixels when the images are rescaled to 640x480.
The per-keypoint error is roughly half the size of a hand. Hand-pose recognizers
do not seem to be robust to partial occlusions while in the real world human
hands tend to be occluded when hand-object interactions occur. Resilience to
partial occlusions is generally not exercised by current datasets, in hand pose
recognition or other areas of computer vision. More datasets for object recognition
and other tasks where occlusion plays a large role may drive research toward new
approaches.

Humans were found to be highly robust to partial occlusions with performance
only being weakly related with respect to the percentage of the keypoints which are
occluded. We are following up with experiments to understand how much viewing
time is required for this robustness to manifest in humans — a long processing
time may indicate the necessity for more than feed-forward networks. We hope
this dataset will lead to new approaches to robust hand-pose recognition given
the importance of this task for action recognition and human-robot interactions.

References

1. Presti, L.L., La Cascia, M.: 3d skeleton-based human action classification: A survey.
Pattern Recognition 53 (2016) 130-147

2. Perez-Sala, X., Escalera, S., Angulo, C., Gonzalez, J.: A survey on model based
approaches for 2d and 3d visual human pose recovery. Sensors 14 (2014) 4189-4210

3. Wei, S.E., Ramakrishna, V., Kanade, T., Sheikh, Y.: Convolutional pose ma-
chines. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. (2016) 4724-4732

4. Cao, Z., Simon, T., Wei, S.E., Sheikh, Y.: Realtime multi-person 2d pose estimation
using part affinity fields. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. (2017) 7291-7299

5. Papandreou, G., Zhu, T., Kanazawa, N., Toshev, A., Tompson, J., Bregler, C.,
Murphy, K.: Towards accurate multi-person pose estimation in the wild. In:
Computer Vision and Pattern Recognition (CVPR), 2017 IEEE Conference on,
IEEE (2017) 3711-3719



14

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Myanganbayar et al.

. Zimmermann, C., Brox, T.: Learning to estimate 3d hand pose from single RGB

images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. (2017) 4903-4911

. Simon, T., Joo, H., Matthews, 1., Sheikh, Y.: Hand keypoint detection in single

images using multiview bootstrapping. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. (2017) 1145-1153

. Sridhar, S., Oulasvirta, A., Theobalt, C.: Interactive markerless articulated hand mo-

tion tracking using RGB and depth data. In: Proceedings of the IEEE international
conference on computer vision. (2013) 24562463

. Mueller, F., Mehta, D., Sotnychenko, O., Sridhar, S., Casas, D., Theobalt, C.:

Real-time hand tracking under occlusion from an egocentric RGB-D sensor. In:
Proceedings of International Conference on Computer Vision (ICCV). (2017)
Sridhar, S., Mueller, F., Zollhofer, M., Casas, D., Oulasvirta, A., Theobalt, C.:
Real-time joint tracking of a hand manipulating an object from RGB-D input. In:
European Conference on Computer Vision, Springer (2016) 294-310

Tompson, J., Stein, M., Lecun, Y., Perlin, K.: Real-time continuous pose recovery
of human hands using convolutional networks. ACM Transactions on Graphics 33
(2014)

Huang, Y., Bianchi, M., Liarokapis, M., Sun, Y.: Recent data sets on object
manipulation: A survey. Big data 4 (2016) 197-216

Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B.: 2d human pose estimation: New
benchmark and state of the art analysis. In: Proceedings of the IEEE Conference
on computer Vision and Pattern Recognition. (2014) 3686-3693

Bullock, I.M., Feix, T., Dollar, A.M.: The yale human grasping dataset: Grasp, ob-
ject, and task data in household and machine shop environments. The International
Journal of Robotics Research 34 (2015) 251-255

Berzak, Y., Huang, Y., Barbu, A., Korhonen, A., Katz, B.: Anchoring and agreement
in syntactic annotations. In: Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing. (2016) 22152224

Santello, M., Bianchi, M., Gabiccini, M., Ricciardi, E., Salvietti, G., Prattichizzo,
D., Ernst, M., Moscatelli, A., Jorntell, H., Kappers, A.M., et al.: Hand synergies:
integration of robotics and neuroscience for understanding the control of biological
and artificial hands. Physics of life reviews 17 (2016) 1-23

Bohg, J., Morales, A., Asfour, T., Kragic, D.: Data-driven grasp synthesis—a survey.
IEEE Transactions on Robotics 30 (2014) 289-309

Levine, S., Pastor, P., Krizhevsky, A., Ibarz, J., Quillen, D.: Learning hand-eye
coordination for robotic grasping with deep learning and large-scale data collection.
The International Journal of Robotics Research 37 (2018) 421-436

Goldfeder, C., Ciocarlie, M., Dang, H., Allen, P.K.: The columbia grasp database.
In: Robotics and Automation, 2009. ICRA’09. IEEE International Conference on,
IEEE (2009) 1710-1716

Chebotar, Y., Hausman, K., Su, Z., Molchanov, A., Kroemer, O., Sukhatme, G.,
Schaal, S.: Bigs: Biotac grasp stability dataset. In: ICRA 2016 Workshop on
Grasping and Manipulation Datasets. (2016)



