Dynamics in Deep Classifiers trained with the Square Loss: normalization, low rank, neural collapse and generalization bounds

TitleDynamics in Deep Classifiers trained with the Square Loss: normalization, low rank, neural collapse and generalization bounds
Publication TypeJournal Article
Year of Publication2023
AuthorsXu, M, Rangamani, A, Liao, Q, Galanti, T, Poggio, T
JournalResearch
Date Published01/2023
Abstract

We overview several properties – old and new – of training overparametrized deep networks under the square loss. We first consider a model of the dynamics of gradient flow under the square loss in deep homogeneous ReLU networks. We study the convergence to a solution with the absolute minimum ρ, which is the product of the Frobenius norms of each layer weight matrix, when normalization by Lagrange multipliers (LM) is used together with Weight Decay (WD) under different forms of gradient descent. A main property of the minimizers that bounds their expected error for a specific network architecture is ρ. In particular, we derive novel norm- based bounds for convolutional layers that are orders of magnitude better than classical bounds for dense networks. Next we prove that quasi-interpolating solutions obtained by Stochastic Gradient Descent (SGD) in the presence of WD have a bias towards low rank weight matrices – that should improve generalization. The same analysis predicts the existence of an inherent SGD noise for deep networks. In both cases, we verify our predictions experimentally. We then predict Neural Collapse and its properties without any specific assumption – unlike other published proofs. Our analysis supports the idea that the advantage of deep networks relative to other classifiers is greater for problems that are appropriate for sparse deep architectures such as CNNs. The reason is that compositionally sparse target functions can be approximated well by “sparse” deep networks without incurring in the curse of dimensionality.

URLhttps://spj-science-org.ezproxy.canberra.edu.au/doi/10.34133/research.0024
DOI10.34133/research.0024
Short TitleResearch
Download:  PDF icon research.0024.pdf

Associated Module: 

CBMM Relationship: 

  • CBMM Funded