All Publications

2020

M. J. McPherson and McDermott, J. H., Time-dependent discrimination advantages for harmonic sounds suggest efficient coding for memory, Proceedings of the National Academy of Sciences, vol. 117, no. 50, pp. 32169 - 32180, 2020.
CBMM Related
CBMM Funded
M. Nye, Solar-Lezama, A., Tenenbaum, J. B., and Lake, B. M., Learning Compositional Rules via Neural Program Synthesis, in Advances in Neural Information Processing Systems 33 pre-proceedings (NeurIPS 2020), 2020.PDF icon 2003.05562.pdf (2.51 MB)
CBMM Funded
L. Tian, Ellis, K., Kryven, M., and Tenenbaum, J. B., Learning abstract structure for drawing by efficient motor program induction, in Advances in Neural Information Processing Systems 33 pre-proceedings (NeurIPS 2020), 2020.
CBMM Funded
S. - M. Udrescu, Tan, A., Feng, J., Neto, O., Wu, T., and Tegmark, M., AI Feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity, in Advances in Neural Information Processing Systems 33 pre-proceedings (NeurIPS 2020), 2020.PDF icon 2006.10782.pdf (2.62 MB)
CBMM Funded
CBMM Funded
CBMM Funded
CBMM Memo No.
113
A. Banburski, Gandhi, A., Alford, S., Dandekar, S., Chin, P., and Poggio, T., Dreaming with ARC, Learning Meets Combinatorial Algorithms workshop at NeurIPS 2020. 2020.PDF icon CBMM Memo 113.pdf (1019.64 KB)
CBMM Funded
T. Poggio and Banburski, A., An Overview of Some Issues in the Theory of Deep Networks, IEEJ Transactions on Electrical and Electronic Engineering, vol. 15, no. 11, pp. 1560 - 1571, 2020.
CBMM Funded
J. Bill, Pailian, H., Gershman, S. J., and Drugowitsch, J., Hierarchical structure is employed by humans during visual motion perception, Proceedings of the National Academy of Sciences, vol. 117, no. 39, pp. 24581 - 24589, 2020.
CBMM Related
CBMM Funded
CBMM Memo No.
112
CBMM Funded
H. Mhaskar and Poggio, T., Function approximation by deep networks, Communications on Pure & Applied Analysis, vol. 19, no. 8, pp. 4085 - 4095, 2020.PDF icon 1534-0392_2020_8_4085.pdf (514.57 KB)
CBMM Funded

Pages